(→CT SIGNAL & ITS FOURIER COEFFICIENTS) |
|||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | == CT SIGNAL | + | [[Category:problem solving]] |
− | + | [[Category:ECE301]] | |
+ | [[Category:ECE]] | ||
+ | [[Category:Fourier series]] | ||
+ | [[Category:signals and systems]] | ||
+ | == Example of Computation of Fourier series of a CT SIGNAL == | ||
+ | A [[Signals_and_systems_practice_problems_list|practice problem on "Signals and Systems"]] | ||
+ | ---- | ||
Let the input signal be | Let the input signal be | ||
Line 15: | Line 21: | ||
<math>a_-1 = \frac{j}{2}</math> | <math>a_-1 = \frac{j}{2}</math> | ||
− | < | + | <math>a_2 = 1 </math> |
+ | |||
+ | <math>a_-2 = 1 </math> | ||
− | < | + | <math>a_k = 0</math> |
+ | ---- | ||
+ | [[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]] |
Latest revision as of 09:59, 16 September 2013
Example of Computation of Fourier series of a CT SIGNAL
A practice problem on "Signals and Systems"
Let the input signal be
$ x(t)=sint +2cos2t $
= $ \frac{e^{jt}-e^{-jt}}{2i} $+$ 2*\frac{e^{2jt}+{e^{-2jt}}}{2} $
= $ \frac{-j{e^{jt}}}{2}+\frac{j{e^{-jt}}}{2}+{e^{2jt}}+{e^{-2jt}} $
The coefficients are as follows:
$ a_1 = \frac{-j}{2} $
$ a_-1 = \frac{j}{2} $
$ a_2 = 1 $
$ a_-2 = 1 $
$ a_k = 0 $