(CT Periodic Signal)
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier series]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier series of a CT SIGNAL ==
 +
A [[Signals_and_systems_practice_problems_list|practice problem on "Signals and Systems"]]
 +
----
 +
 
==CT Periodic Signal==
 
==CT Periodic Signal==
:<math>x(t)=2cos(\pi t)+3 \,</math>
+
:<math>x(t)=2cos(\pi/2 t)+3 \,</math>
:<math>T=\dfrac{2\pi}{\pi/2} \,</math>
+
:<math>T=\dfrac{2\pi}{4} \,</math>
:<math>T=4 \,</math>
+
:<math>T=\pi/2 \,</math>
 
:<math>x(t)=2\dfrac{e^{.5 j t \pi}-e^{-.5 j t \pi}}{2}+3</math>
 
:<math>x(t)=2\dfrac{e^{.5 j t \pi}-e^{-.5 j t \pi}}{2}+3</math>
 
:<math>x(t)=e^{.5 j t \pi}-e^{-.5 j t \pi}+3e^{.5 \pi*0} \, </math>
 
:<math>x(t)=e^{.5 j t \pi}-e^{-.5 j t \pi}+3e^{.5 \pi*0} \, </math>
Line 11: Line 20:
 
a2=0
 
a2=0
 
a3=0
 
a3=0
 +
----
 +
[[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]]

Latest revision as of 09:57, 16 September 2013

Example of Computation of Fourier series of a CT SIGNAL

A practice problem on "Signals and Systems"


CT Periodic Signal

$ x(t)=2cos(\pi/2 t)+3 \, $
$ T=\dfrac{2\pi}{4} \, $
$ T=\pi/2 \, $
$ x(t)=2\dfrac{e^{.5 j t \pi}-e^{-.5 j t \pi}}{2}+3 $
$ x(t)=e^{.5 j t \pi}-e^{-.5 j t \pi}+3e^{.5 \pi*0} \, $
a-1=1
a0=3
a1=1
a2=0
a3=0
----
[[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]]

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics