(New page: ==CT Periodic Signal== :<math>x(t)=2cos(\dfrac{\pi}{2}t) \,</math> :<math>T=\dfrac{2\pi}{\pi/2} \,</math> :<math>T=4 \,</math> :<math>x(t)=2\dfrac{e^{.5 j t \pi}-e^{-.5 j t \pi}}{2}</math>...) |
|||
(5 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
+ | [[Category:problem solving]] | ||
+ | [[Category:ECE301]] | ||
+ | [[Category:ECE]] | ||
+ | [[Category:Fourier series]] | ||
+ | [[Category:signals and systems]] | ||
+ | == Example of Computation of Fourier series of a CT SIGNAL == | ||
+ | A [[Signals_and_systems_practice_problems_list|practice problem on "Signals and Systems"]] | ||
+ | ---- | ||
+ | |||
==CT Periodic Signal== | ==CT Periodic Signal== | ||
− | :<math>x(t)=2cos( | + | :<math>x(t)=2cos(\pi/2 t)+3 \,</math> |
− | :<math>T=\dfrac{2\pi}{ | + | :<math>T=\dfrac{2\pi}{4} \,</math> |
− | :<math>T= | + | :<math>T=\pi/2 \,</math> |
− | :<math>x(t)=2\dfrac{e^{.5 j t \pi}-e^{-.5 j t \pi}}{2}</math> | + | :<math>x(t)=2\dfrac{e^{.5 j t \pi}-e^{-.5 j t \pi}}{2}+3</math> |
− | :<math>x(t)=e^{.5 j t \pi}-e^{-.5 j t \pi} | + | :<math>x(t)=e^{.5 j t \pi}-e^{-.5 j t \pi}+3e^{.5 \pi*0} \, </math> |
− | + | <pre> | |
− | + | a-1=1 | |
− | + | a0=3 | |
− | + | a1=1 | |
− | + | a2=0 | |
+ | a3=0 | ||
+ | ---- | ||
+ | [[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]] |
Latest revision as of 09:57, 16 September 2013
Example of Computation of Fourier series of a CT SIGNAL
A practice problem on "Signals and Systems"
CT Periodic Signal
- $ x(t)=2cos(\pi/2 t)+3 \, $
- $ T=\dfrac{2\pi}{4} \, $
- $ T=\pi/2 \, $
- $ x(t)=2\dfrac{e^{.5 j t \pi}-e^{-.5 j t \pi}}{2}+3 $
- $ x(t)=e^{.5 j t \pi}-e^{-.5 j t \pi}+3e^{.5 \pi*0} \, $
a-1=1 a0=3 a1=1 a2=0 a3=0 ---- [[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]]