(17 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
+ | [[Category:problem solving]] | ||
+ | [[Category:ECE301]] | ||
+ | [[Category:ECE]] | ||
+ | [[Category:Fourier series]] | ||
+ | [[Category:signals and systems]] | ||
+ | == Example of Computation of Fourier series of a CT SIGNAL == | ||
+ | A [[Signals_and_systems_practice_problems_list|practice problem on "Signals and Systems"]] | ||
+ | ---- | ||
CT signal: | CT signal: | ||
Line 5: | Line 13: | ||
− | <math>x(t) = 4 * \frac{e^{j5\pi t} - e^{-j5\pi t}}{ | + | <math>x(t) = 4 * \frac{e^{j5\pi t} - e^{-j5\pi t}}{2j} - (2+j)*\frac{e^{j3\pi t} + e^{-j3\pi t}}{2}\,</math> |
− | <math>x(t) = | + | <math>x(t) = \frac{2}{j}e^{j5\pi t} - \frac{2}{j}e^{-j5\pi t} - \frac{2+j}{2}e^{j3\pi t} - \frac{2+j}{2}e^{j3\pi t}\,</math> |
− | <math>x(t) = | + | <math>x(t) = \frac{2}{j}e^{5*j\pi t} - \frac{2}{j}e^{-5*j\pi t} - \frac{2+j}{2}e^{3*j\pi t} - \frac{2+j}{2}e^{-3*j\pi t}\,</math> |
+ | |||
+ | |||
+ | |||
+ | <math>\omega_0\,</math> ends up being <math>\pi\,</math> for this signal | ||
+ | |||
+ | So because of that, in my last step, i was able to determine what value of K's i had. (k = 3,-3,5,-5) | ||
+ | |||
+ | So then you just take the coefficients of those terms to get the <math>a_k\,</math> | ||
+ | |||
+ | |||
+ | |||
+ | Therefore: | ||
+ | |||
+ | |||
+ | |||
+ | <math>a_3 = \frac{-2-j}{2}\,</math> | ||
+ | |||
+ | |||
+ | |||
+ | <math>a_{-3} = \frac{-2-j}{2}\,</math> | ||
+ | |||
+ | |||
+ | |||
+ | <math>a_5 = \frac{2}{j}\,</math> | ||
+ | |||
+ | |||
+ | |||
+ | <math>a_{-5} = \frac{-2}{j}\,</math> | ||
+ | |||
+ | |||
+ | |||
+ | For every other k: | ||
+ | |||
+ | <math>a_k\, = 0</math> | ||
+ | ---- | ||
+ | [[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]] |
Latest revision as of 09:58, 16 September 2013
Example of Computation of Fourier series of a CT SIGNAL
A practice problem on "Signals and Systems"
CT signal:
$ x(t) = 4\sin(5 \pi t) - (2 + j)\cos(3 \pi t)\, $
$ x(t) = 4 * \frac{e^{j5\pi t} - e^{-j5\pi t}}{2j} - (2+j)*\frac{e^{j3\pi t} + e^{-j3\pi t}}{2}\, $
$ x(t) = \frac{2}{j}e^{j5\pi t} - \frac{2}{j}e^{-j5\pi t} - \frac{2+j}{2}e^{j3\pi t} - \frac{2+j}{2}e^{j3\pi t}\, $
$ x(t) = \frac{2}{j}e^{5*j\pi t} - \frac{2}{j}e^{-5*j\pi t} - \frac{2+j}{2}e^{3*j\pi t} - \frac{2+j}{2}e^{-3*j\pi t}\, $
$ \omega_0\, $ ends up being $ \pi\, $ for this signal
So because of that, in my last step, i was able to determine what value of K's i had. (k = 3,-3,5,-5)
So then you just take the coefficients of those terms to get the $ a_k\, $
Therefore:
$ a_3 = \frac{-2-j}{2}\, $
$ a_{-3} = \frac{-2-j}{2}\, $
$ a_5 = \frac{2}{j}\, $
$ a_{-5} = \frac{-2}{j}\, $
For every other k:
$ a_k\, = 0 $