(One intermediate revision by the same user not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier series]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier series of a CT SIGNAL ==
 +
A [[Signals_and_systems_practice_problems_list|practice problem on "Signals and Systems"]]
 +
----
 +
 
CT Periodic Signal : <math>x(t) = \cos(3\pi t) + \sin(4\pi t)\,</math>
 
CT Periodic Signal : <math>x(t) = \cos(3\pi t) + \sin(4\pi t)\,</math>
  
Line 26: Line 35:
  
 
<math>a_k = 0 , k \neq 3,-3,4,-4\,</math>
 
<math>a_k = 0 , k \neq 3,-3,4,-4\,</math>
 +
----
 +
[[Signals_and_systems_practice_problems_list|Back to Practice Problems on Signals and Systems]]

Latest revision as of 09:59, 16 September 2013

Example of Computation of Fourier series of a CT SIGNAL

A practice problem on "Signals and Systems"


CT Periodic Signal : $ x(t) = \cos(3\pi t) + \sin(4\pi t)\, $

$ x(t) = \cos(3\pi t) + \sin(4\pi t)\, $

$ = \frac{e^{3j\pi t}}{2} + \frac{e^{-3j\pi t}}{2} + \frac{e^{4j\pi t}}{2j} - \frac{e^{-4j\pi t}}{2j} \, $

I take $ \omega_o \, $ as $ \pi \, $ since both functions have a period based on it.

The following is the coefficient of the signal:

$ a_3 = \frac{1}{2}\, $

$ a_{-3} = \frac{1}{2}\, $

$ a_{4} = \frac{1}{2j}\, $

$ a_{-4} = -\frac{1}{2j}\, $

We can write the function in the following illiterations:

$ x(t) = \sum^{\infty}_{k = -\infty} a_k e^{jk\pi t}\, $ where

$ a_3 = a_{-3} = \frac{1}{2}\, $

$ a_{4} = \frac{1}{2j} = -a_{-4}\, $

$ a_k = 0 , k \neq 3,-3,4,-4\, $


Back to Practice Problems on Signals and Systems

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva