Line 5: Line 5:
 
Therefore, <math>a*X + b*\bar{X} \to a*Y + b*\bar{Y}</math> where <math>a, b \in \mathbb{C}</math>
 
Therefore, <math>a*X + b*\bar{X} \to a*Y + b*\bar{Y}</math> where <math>a, b \in \mathbb{C}</math>
  
'''3)'''First, one has to find the matrix that was used in encoding.  To find this, we take input '''<big><math>(1,0,4,0,1,0,1,0,1)</math></big>''' and turn it into matrix <math>\begin{Bmatrix}1 & 0 & 4\\ 0 & 1 & 0\\ 1 & 0 & 1\end{Bmatrix}</math>.  Then find the inverse of the output matrix <math>\begin{Bmatrix}2 &0&0\\0&1&0\\0&0&3\end{Bmatrix}</math> which is <math>\begin{Bmatrix}\frac{1}{2}&0&2\\0&1&0\\ \frac{1}{3}&0&\frac{1}{3}\end{Bmatrix}</math>
+
'''3)'''First, one has to find the matrix that was used in encoding.  To find this, we take input '''<big><math>(1,0,4,0,1,0,1,0,1)</math></big>''' and turn it into matrix <math>\begin{Bmatrix}1 & 0 & 4\\ 0 & 1 & 0\\ 1 & 0 & 1\end{Bmatrix}</math>.  Then find the inverse of the output matrix <math>\begin{Bmatrix}2 &0&0\\0&1&0\\0&0&3\end{Bmatrix}</math> which is <math>\begin{Bmatrix}\frac{1}{2}&0&\frac{1}{3}\\0&1&0\\ 2&0&\frac{1}{3}\end{Bmatrix}</math> being the inverse of the secret matrix.
  
<math>\begin{Bmatrix}a * b* c\end{Bmatrix} * \begin{Bmatrix}1 & 0 & 4\\ 0 & 1 & 0\\ 1 & 0 & 1\end{Bmatrix} \to \begin{Bmatrix}2 &0&0\\0&1&0\\0&0&3\end{Bmatrix}</math> which yields three equations with three unknowns.
+
multiplying <math>\begin{Bmatrix}2&23&3\end{Bmatrix}</math> by the inverse of the secret matrix yields matrix <math>\begin{Bmatrix}2&23&5\end{Bmatrix}</math>
  
Solving for coefficients '''<big>a, b, c</big>'''
+
which is the answer to the secret message being B W E.

Latest revision as of 16:50, 19 September 2008

1) Bob can decrypt the message by multiplying the encrypted message by the inverse of the 3x3 matrix that his friend gave him, if it exists.

2)Yes she can! Reason being that this is a linear system in which input $ X $ yields output $ Y $ and input $ \bar{X} $ yields output $ \bar{Y} $.

Therefore, $ a*X + b*\bar{X} \to a*Y + b*\bar{Y} $ where $ a, b \in \mathbb{C} $

3)First, one has to find the matrix that was used in encoding. To find this, we take input $ (1,0,4,0,1,0,1,0,1) $ and turn it into matrix $ \begin{Bmatrix}1 & 0 & 4\\ 0 & 1 & 0\\ 1 & 0 & 1\end{Bmatrix} $. Then find the inverse of the output matrix $ \begin{Bmatrix}2 &0&0\\0&1&0\\0&0&3\end{Bmatrix} $ which is $ \begin{Bmatrix}\frac{1}{2}&0&\frac{1}{3}\\0&1&0\\ 2&0&\frac{1}{3}\end{Bmatrix} $ being the inverse of the secret matrix.

multiplying $ \begin{Bmatrix}2&23&3\end{Bmatrix} $ by the inverse of the secret matrix yields matrix $ \begin{Bmatrix}2&23&5\end{Bmatrix} $

which is the answer to the secret message being B W E.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood