(New page: <math>e^{2jt}</math> yields <math>te^{-2jt}</math>)
 
 
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
<math>e^{2jt}</math> yields <math>te^{-2jt}</math>
 
<math>e^{2jt}</math> yields <math>te^{-2jt}</math>
 +
and
 +
<math>e^{-2jt}</math> yields <math>te^{2jt}</math>
 +
 +
and the system is linear
 +
 +
since Euler's formulat states that : <math>e^{jx} = \cos x + j\sin x \!</math>
 +
 +
<math>e^{2jt} = \cos 2t + j\sin 2t \!</math>
 +
 +
and
 +
 +
<math>e^{-2jt} = \cos -2t + j\sin -2t \!</math>
 +
<math>        = \cos  2t - j\sin  2t \!</math>
 +
 +
 +
<math>\frac{e^{2jt}+e^{-2jt}}{2}=cos2t\!</math>
 +
 +
Putting <math>cos2t</math> as an input will yield <math>\frac{te^{2jt}+te^{-2jt}}{2}=tcos2t=tcos-2t\!</math>

Latest revision as of 15:03, 19 September 2008

$ e^{2jt} $ yields $ te^{-2jt} $ and $ e^{-2jt} $ yields $ te^{2jt} $

and the system is linear

since Euler's formulat states that : $ e^{jx} = \cos x + j\sin x \! $

$ e^{2jt} = \cos 2t + j\sin 2t \! $

and

$ e^{-2jt} = \cos -2t + j\sin -2t \! $ $ = \cos 2t - j\sin 2t \! $


$ \frac{e^{2jt}+e^{-2jt}}{2}=cos2t\! $

Putting $ cos2t $ as an input will yield $ \frac{te^{2jt}+te^{-2jt}}{2}=tcos2t=tcos-2t\! $

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison