(New page: == Part C.1 == If Bob knows the secret matrix used to encrypt the message, He can simply take the inverse of that matrix and multiply the encrypted vector by the inverted matrix. ---- ...)
 
(Part C.3)
 
(9 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
'''Application of Linearity'''
  
 
== Part C.1 ==
 
== Part C.1 ==
  
 
If Bob knows the secret matrix used to encrypt the message, He can simply take the inverse of that matrix and multiply the encrypted vector by the inverted matrix.
 
If Bob knows the secret matrix used to encrypt the message, He can simply take the inverse of that matrix and multiply the encrypted vector by the inverted matrix.
 
----
 
 
  
 
== Part C.2 ==
 
== Part C.2 ==
Line 13: Line 11:
  
 
== Part C.3 ==
 
== Part C.3 ==
 +
 +
<pre>
 +
%{
 +
  Jeremiah Wise
 +
  Homework #3 Part C.3
 +
%}
 +
clear all
 +
clc
 +
 +
message = [1 0 4; 0 1 0; 1 0 1];
 +
 +
encryptedVector = [2 0 0; 0 1 0; 0 0 3];
 +
 +
secretMatrix = ((inv(message)) * encryptedVector)
 +
 +
%{
 +
  This code produces the matrix:
 +
 +
secretMatrix =
 +
 +
  -0.6667        0    0.6667
 +
        0    1.0000        0
 +
    4.0000        0  -1.0000
 +
 +
%}
 +
 +
newMessage = [2 23 3];
 +
 +
decryptedMessage = newMessage * inv(secretMatrix)
 +
 +
%{
 +
  This code produces the matrix:
 +
 +
decryptedMessage =
 +
 +
    2    23    5
 +
 +
%}
 +
 +
</pre>
 +
 +
So the decrypted message is BWE!

Latest revision as of 13:47, 19 September 2008

Application of Linearity

Part C.1

If Bob knows the secret matrix used to encrypt the message, He can simply take the inverse of that matrix and multiply the encrypted vector by the inverted matrix.

Part C.2

Yes she can just solve the system of equations represented by the matrix, but in general it is easier to just use matrices to solve such equations.


Part C.3

%{
  Jeremiah Wise
  Homework #3 Part C.3
%}
clear all
clc

message = [1 0 4; 0 1 0; 1 0 1];

encryptedVector = [2 0 0; 0 1 0; 0 0 3];

secretMatrix = ((inv(message)) * encryptedVector)

%{
  This code produces the matrix:

secretMatrix =

   -0.6667         0    0.6667
         0    1.0000         0
    4.0000         0   -1.0000

%}

newMessage = [2 23 3];

decryptedMessage = newMessage * inv(secretMatrix)

%{
  This code produces the matrix:

decryptedMessage =

     2    23     5

%}

So the decrypted message is BWE!

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett