(New page: == The Basics of Linearity ==)
 
 
Line 1: Line 1:
 
== The Basics of Linearity ==
 
== The Basics of Linearity ==
 +
<math>e^{(2jt)}</math>--->[linear system]---><math>te^{(-2jt)}</math>
 +
 +
and that
 +
 +
<math>e^{(-2jt)}</math>--->[linear system]---><math>te^{(2jt)}</math>
 +
 +
we can rewrite <math>cos(2t)</math> as <math> 0.5 * (e^{(2jt)}+e^{(-2jt)})</math>
 +
 +
knowing that for any x1(t) and x2(t) yielding y1(t) and y2(t) respectively when passed through a linear system that A*x1(t) + B*x2(t) yields A*y1(t) + B*y2(t) we can change A and B to 0.5 thus
 +
 +
<math>cos(2t)</math>--->linear system ---> <math> 0.5t * (e^{(2jt)}+e^{(-2jt)})</math> or <math> tcos(2t)</math>

Latest revision as of 12:33, 19 September 2008

The Basics of Linearity

$ e^{(2jt)} $--->[linear system]--->$ te^{(-2jt)} $

and that

$ e^{(-2jt)} $--->[linear system]--->$ te^{(2jt)} $

we can rewrite $ cos(2t) $ as $ 0.5 * (e^{(2jt)}+e^{(-2jt)}) $

knowing that for any x1(t) and x2(t) yielding y1(t) and y2(t) respectively when passed through a linear system that A*x1(t) + B*x2(t) yields A*y1(t) + B*y2(t) we can change A and B to 0.5 thus

$ cos(2t) $--->linear system ---> $ 0.5t * (e^{(2jt)}+e^{(-2jt)}) $ or $ tcos(2t) $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett