(Part A: Understanding System’s Properties)
(Non-casual System)
 
(2 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
===Casual System===
 
===Casual System===
 
'''Casual system''' is a system where the output <math>y(t)</math> at some specific instant <math>t_0</math> only depends on the input <math>x(t)</math> for value of <math>t</math> less than or equal to <math>t_0</math>.
 
'''Casual system''' is a system where the output <math>y(t)</math> at some specific instant <math>t_0</math> only depends on the input <math>x(t)</math> for value of <math>t</math> less than or equal to <math>t_0</math>.
 +
 +
====Example====
 +
Memoryless system
 +
:<math>y \left( t \right) = 1 + x \left( t \right) \cos \left( \omega t \right)</math>
 +
 
===Non-casual System===
 
===Non-casual System===
 +
'''Non-casual system''' is a system that has some dependence on input values from the future (in addition to possible dependence on past or current input values).
 +
====Example====
 +
:<math>y(t)=\int_{-\infty}^{\infty } \sin (t+\tau) x(\tau)\,d\tau</math>

Latest revision as of 15:45, 19 September 2008

Causal & Non-casual Systems

Casual System

Casual system is a system where the output $ y(t) $ at some specific instant $ t_0 $ only depends on the input $ x(t) $ for value of $ t $ less than or equal to $ t_0 $.

Example

Memoryless system

$ y \left( t \right) = 1 + x \left( t \right) \cos \left( \omega t \right) $

Non-casual System

Non-casual system is a system that has some dependence on input values from the future (in addition to possible dependence on past or current input values).

Example

$ y(t)=\int_{-\infty}^{\infty } \sin (t+\tau) x(\tau)\,d\tau $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett