(New page: Provided that: : <math> e^{j2t} </math>----------> System ----------> <math> te^{-2jt} </math><br> : <math> e^{-j2t} </math>----------> System ----------> <math> te^{2jt} </math><br>) |
|||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | Provided that: | + | Provided that:<br> |
− | + | (1) <math> e^{j2t}\ </math> ----------> System ----------> <math> te^{-2jt}\ </math><br> | |
− | : <math> e^{-j2t} </math>----------> System ----------> <math> te^{2jt} </math><br> | + | (2) <math> e^{-j2t}\ </math>----------> System ----------> <math> te^{2jt}\ </math><br> |
+ | (3) The System is Linear. <br><br> | ||
+ | |||
+ | The following should hold true:<br><br> | ||
+ | (1)<math> e^{j2t} + e^{-j2t}\ </math> ----------> System -----------> <math> te^{-2jt} + te^{2jt}\ </math><br> | ||
+ | (2)<math> {e^{j2t} + e^{-j2t}\over 2} </math> ----------> System -----------> <math> {te^{-2jt} + te^{2jt}\over 2} </math><br><br> | ||
+ | |||
+ | The Key to approach this problem is: What is <math> \cos 2t\ </math>? | ||
+ | <br> | ||
+ | (1) <math> \cos 2t\ = {e^{j2t} + e^{-j2t} \over 2} </math> by Euler's Formalas.<br> | ||
+ | (2) The response to (1) is <math>{te^{-2jt} + te^{2jt}\over 2} </math><br><br> | ||
+ | It is unnecessary to say this but it is <math> t\ \cos 2t\ </math> |
Latest revision as of 06:10, 19 September 2008
Provided that:
(1) $ e^{j2t}\ $ ----------> System ----------> $ te^{-2jt}\ $
(2) $ e^{-j2t}\ $----------> System ----------> $ te^{2jt}\ $
(3) The System is Linear.
The following should hold true:
(1)$ e^{j2t} + e^{-j2t}\ $ ----------> System -----------> $ te^{-2jt} + te^{2jt}\ $
(2)$ {e^{j2t} + e^{-j2t}\over 2} $ ----------> System -----------> $ {te^{-2jt} + te^{2jt}\over 2} $
The Key to approach this problem is: What is $ \cos 2t\ $?
(1) $ \cos 2t\ = {e^{j2t} + e^{-j2t} \over 2} $ by Euler's Formalas.
(2) The response to (1) is $ {te^{-2jt} + te^{2jt}\over 2} $
It is unnecessary to say this but it is $ t\ \cos 2t\ $