(New page: Through the system, the following transformations are made: <math>e^{2jt} \to t e^{-2jt}</math> <math>e^{2jt} \to t e^{-2jt}</math>) |
|||
(3 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
<math>e^{2jt} \to t e^{-2jt}</math> | <math>e^{2jt} \to t e^{-2jt}</math> | ||
+ | |||
<math>e^{2jt} \to t e^{-2jt}</math> | <math>e^{2jt} \to t e^{-2jt}</math> | ||
+ | |||
+ | By observation, we know the system multiplies by t and is time reversing. | ||
+ | |||
+ | Given that: | ||
+ | |||
+ | <math> \cos{t} = \frac{e^{jt} + e^{-jt}}{2}</math> | ||
+ | |||
+ | |||
+ | Then | ||
+ | |||
+ | <math> \cos{2t} \to t \frac{e^{-2jt} + e^{2jt}}{2} = t \cos{2t} </math> |
Latest revision as of 02:18, 19 September 2008
Through the system, the following transformations are made:
$ e^{2jt} \to t e^{-2jt} $
$ e^{2jt} \to t e^{-2jt} $
By observation, we know the system multiplies by t and is time reversing.
Given that:
$ \cos{t} = \frac{e^{jt} + e^{-jt}}{2} $
Then
$ \cos{2t} \to t \frac{e^{-2jt} + e^{2jt}}{2} = t \cos{2t} $