(New page: Through the system, the following transformations are made: <math>e^{2jt} \to t e^{-2jt}</math> <math>e^{2jt} \to t e^{-2jt}</math>)
 
 
(3 intermediate revisions by the same user not shown)
Line 2: Line 2:
  
 
<math>e^{2jt} \to t e^{-2jt}</math>
 
<math>e^{2jt} \to t e^{-2jt}</math>
 +
 
<math>e^{2jt} \to t e^{-2jt}</math>
 
<math>e^{2jt} \to t e^{-2jt}</math>
 +
 +
By observation, we know the system multiplies by t and is time reversing.
 +
 +
Given that:
 +
 +
<math> \cos{t} = \frac{e^{jt} + e^{-jt}}{2}</math>
 +
 +
 +
Then
 +
 +
<math> \cos{2t} \to t \frac{e^{-2jt} + e^{2jt}}{2} = t \cos{2t} </math>

Latest revision as of 02:18, 19 September 2008

Through the system, the following transformations are made:

$ e^{2jt} \to t e^{-2jt} $

$ e^{2jt} \to t e^{-2jt} $

By observation, we know the system multiplies by t and is time reversing.

Given that:

$ \cos{t} = \frac{e^{jt} + e^{-jt}}{2} $


Then

$ \cos{2t} \to t \frac{e^{-2jt} + e^{2jt}}{2} = t \cos{2t} $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang