(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
[[Homework 3_ECE301Fall2008mboutin]] - [[HW3.A Allen Humphreys_ECE301Fall2008mboutin|'''A''']] - [[HW3.B Allen Humphreys_ECE301Fall2008mboutin|'''B''']] - [[HW3.C Allen Humphreys_ECE301Fall2008mboutin|'''C''']] | [[Homework 3_ECE301Fall2008mboutin]] - [[HW3.A Allen Humphreys_ECE301Fall2008mboutin|'''A''']] - [[HW3.B Allen Humphreys_ECE301Fall2008mboutin|'''B''']] - [[HW3.C Allen Humphreys_ECE301Fall2008mboutin|'''C''']] | ||
− | We know that the system is linear, therefore, we can | + | We know that the system is linear, therefore, we can sum the inputs to equal the sum of outputs: |
− | <math>x_{ | + | The input is |
+ | : <math>x_{c}(t) = e^{2\times jt} + e^{-2\times jt} </math> | ||
+ | and the corresponding output is | ||
+ | :<math>y_{c}(t) = t \times e^{-2jt} + t \times e^{2jt}</math> | ||
− | + | We know by Euler's formula: | |
− | + | : <math>\cos 2t = {e^{2jt} + e^{-2jt} \over 2}</math> | |
+ | |||
+ | Finally, by the multiplication property of linear systems: | ||
+ | |||
+ | The input, | ||
+ | :<math> {x_{c}(t) \over 2} = \cos 2t = {e^{2\times jt} + e^{-2\times jt} \over 2} </math> | ||
+ | |||
+ | will yield the output: | ||
+ | :<math>{y_{c}(t) \over 2} = {t e^{-2jt} + t e^{2jt} \over 2}</math> |
Latest revision as of 13:29, 19 September 2008
Homework 3_ECE301Fall2008mboutin - A - B - C
We know that the system is linear, therefore, we can sum the inputs to equal the sum of outputs:
The input is
- $ x_{c}(t) = e^{2\times jt} + e^{-2\times jt} $
and the corresponding output is
- $ y_{c}(t) = t \times e^{-2jt} + t \times e^{2jt} $
We know by Euler's formula:
- $ \cos 2t = {e^{2jt} + e^{-2jt} \over 2} $
Finally, by the multiplication property of linear systems:
The input,
- $ {x_{c}(t) \over 2} = \cos 2t = {e^{2\times jt} + e^{-2\times jt} \over 2} $
will yield the output:
- $ {y_{c}(t) \over 2} = {t e^{-2jt} + t e^{2jt} \over 2} $