(New page: ==Linearity== The System takes the input and gives the output as follows: <math> e^{2jt} \to System \to te^{-2jt}\!</math> <math> e^{-2jt} \to System \to te^{2jt}\!</math> now,we know ...) |
(→Linearity) |
||
(One intermediate revision by the same user not shown) | |||
Line 11: | Line 11: | ||
thus now from the above equations we can see that <math>e^{2jt}</math> converts to <math>te^{-2jt}</math> and <math>e^{-2jt}</math> converts to <math> te^{2jt}</math> | thus now from the above equations we can see that <math>e^{2jt}</math> converts to <math>te^{-2jt}</math> and <math>e^{-2jt}</math> converts to <math> te^{2jt}</math> | ||
− | thus <math>cos(2t)=\frac{1}{2}e^{2jt} + \frac{1}{2}e^{-2jt} \to | + | thus <math>cos(2t)=\frac{1}{2}e^{2jt} + \frac{1}{2}e^{-2jt} \to System \to \frac{1}{2}te^{-2jt}+ \frac{1}{2}te^{2jt}=t[\frac{1}{2}e^{-2jt}+ \frac{1}{2}e^{2jt}]=tcos(2t)</math> |
+ | |||
+ | thus | ||
+ | |||
+ | <math>cos(2t) \to System \to tcos(2t)</math> |
Latest revision as of 11:18, 18 September 2008
Linearity
The System takes the input and gives the output as follows:
$ e^{2jt} \to System \to te^{-2jt}\! $
$ e^{-2jt} \to System \to te^{2jt}\! $
now,we know that $ cos(2t)=\frac{1}{2}e^{2jt} + \frac{1}{2}e^{-2jt} $
thus now from the above equations we can see that $ e^{2jt} $ converts to $ te^{-2jt} $ and $ e^{-2jt} $ converts to $ te^{2jt} $
thus $ cos(2t)=\frac{1}{2}e^{2jt} + \frac{1}{2}e^{-2jt} \to System \to \frac{1}{2}te^{-2jt}+ \frac{1}{2}te^{2jt}=t[\frac{1}{2}e^{-2jt}+ \frac{1}{2}e^{2jt}]=tcos(2t) $
thus
$ cos(2t) \to System \to tcos(2t) $