(4 intermediate revisions by the same user not shown)
Line 14: Line 14:
  
 
<math>x(t)\to system\to tx(-t)</math>
 
<math>x(t)\to system\to tx(-t)</math>
 +
 +
From Euler's formula
 +
<math>e^{iy}=cos{y}+i sin{y}</math>
  
 
We know that:
 
We know that:
<math>x(t) = cos(2t)= \frac{e^{2jt}+e^{-2jt}{2}</math>
+
x(t) = cos(2t)= <math>\frac{e^{2jt}+e^{-2jt}}{2}</math>
 +
Now taking the system into consideration and applying the above equation to it
 +
<math>\frac{te^{-2jt}+te^{2jt}}{2}=t\frac{e^{-2jt}+e^{2jt}}{2}=tcos(2t)</math>
 +
 
 +
So the system's respone to '''cos(2t)''' is '''tcos(2t)'''

Latest revision as of 10:51, 18 September 2008

As discussed in class,a system is called linear if for any constants a,b belongs to phi and for anputs x1(t), x2(t) (x1[n],x2[n]) yielding output y1(t) , y2(t) respectively the response to

ax1(t) + bx2(t) is ay1(t)+by2(t).

Consider the following system: $ e^{2jt}\to system\to te^{-2jt} $


         $ e^{-2jt}\to system\to te^{2jt} $

From the given system:

$ x(t)\to system\to tx(-t) $

From Euler's formula $ e^{iy}=cos{y}+i sin{y} $

We know that: x(t) = cos(2t)= $ \frac{e^{2jt}+e^{-2jt}}{2} $ Now taking the system into consideration and applying the above equation to it $ \frac{te^{-2jt}+te^{2jt}}{2}=t\frac{e^{-2jt}+e^{2jt}}{2}=tcos(2t) $

So the system's respone to cos(2t) is tcos(2t)

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin