(New page: ==Application of Linearity== ===Part 1=== All Bob needs to do is multiply the secret message by the inverse of the 3x3 secret matrix. ===Part 2===)
 
 
Line 6: Line 6:
  
 
===Part 2===
 
===Part 2===
 +
 +
Eve needs to find the inverse of the secret matrix in order to decrypt the message.  She can find the inverse, but without it she can't decrypt the message.
 +
 +
===Part 3===
 +
 +
 +
<math> \left[ \begin{array}{ccc}
 +
1 & 0 & 1 \\
 +
0 & 1 & 0 \\
 +
4 & 0 & 1 \end{array} \right] \times
 +
\left[ \begin{array}{ccc}
 +
a & b & c \\
 +
d & e & f \\
 +
g & h & i \end{array} \right] =
 +
\left[ \begin{array}{ccc}
 +
2 & 0 & 0 \\
 +
0 & 1 & 0 \\
 +
0 & 0 & 3 \end{array} \right]
 +
</math>
 +
:Therefore
 +
<math>\left[ \begin{array}{ccc}
 +
a & b & c \\
 +
d & e & f \\
 +
g & h & i \end{array} \right] =
 +
\left[ \begin{array}{ccc}
 +
1 & 0 & 1 \\
 +
0 & 1 & 0 \\
 +
4 & 0 & 1 \end{array} \right]^{-1} \times
 +
\left[ \begin{array}{ccc}
 +
2 & 0 & 0 \\
 +
0 & 1 & 0 \\
 +
0 & 0 & 3 \end{array} \right]
 +
</math>
 +
:SECRET MATRIX = <math>\left[ \begin{array}{ccc}
 +
-\frac{2}{3} & 0 & \frac{2}{3} \\
 +
0 & 1 & 0 \\
 +
4 & 0 & -1 \end{array} \right]
 +
</math>
 +
We need to take the Inverse of the Secret Matrix and multiply it by the secret message.
 +
 +
<math>\left[ \begin{array}{ccc}
 +
-\frac{2}{3} & 0 & \frac{2}{3} \\
 +
0 & 1 & 0 \\
 +
4 & 0 & -1 \end{array} \right]^{-1} \times
 +
\left[ \begin{array}{c}
 +
2\\
 +
23\\
 +
3\end{array} \right] = </math> Decrypted Message
 +
:<math>\left[ \begin{array}{ccc}
 +
\frac{1}{2} & 0 & \frac{1}{3} \\
 +
0 & 1 & 0 \\
 +
2 & 0 & \frac{1}{3} \end{array} \right] \times
 +
\left[ \begin{array}{c}
 +
2\\
 +
23\\
 +
3\end{array} \right] =
 +
\left[ \begin{array}{c}
 +
2\\
 +
23\\
 +
5\end{array} \right]
 +
</math>
 +
:The Secret Message is BWE

Latest revision as of 07:47, 18 September 2008

Application of Linearity

Part 1

All Bob needs to do is multiply the secret message by the inverse of the 3x3 secret matrix.

Part 2

Eve needs to find the inverse of the secret matrix in order to decrypt the message. She can find the inverse, but without it she can't decrypt the message.

Part 3

$ \left[ \begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{array} \right] \times \left[ \begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right] = \left[ \begin{array}{ccc} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{array} \right] $

Therefore

$ \left[ \begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right] = \left[ \begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 4 & 0 & 1 \end{array} \right]^{-1} \times \left[ \begin{array}{ccc} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{array} \right] $

SECRET MATRIX = $ \left[ \begin{array}{ccc} -\frac{2}{3} & 0 & \frac{2}{3} \\ 0 & 1 & 0 \\ 4 & 0 & -1 \end{array} \right] $

We need to take the Inverse of the Secret Matrix and multiply it by the secret message.

$ \left[ \begin{array}{ccc} -\frac{2}{3} & 0 & \frac{2}{3} \\ 0 & 1 & 0 \\ 4 & 0 & -1 \end{array} \right]^{-1} \times \left[ \begin{array}{c} 2\\ 23\\ 3\end{array} \right] = $ Decrypted Message

$ \left[ \begin{array}{ccc} \frac{1}{2} & 0 & \frac{1}{3} \\ 0 & 1 & 0 \\ 2 & 0 & \frac{1}{3} \end{array} \right] \times \left[ \begin{array}{c} 2\\ 23\\ 3\end{array} \right] = \left[ \begin{array}{c} 2\\ 23\\ 5\end{array} \right] $
The Secret Message is BWE

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009