(Basics of Linearity)
(Basics of Linearity)
 
(3 intermediate revisions by the same user not shown)
Line 4: Line 4:
 
<math>a * x1(t) + b * x2(t) ---> Sys ---> a * y1(t) + b * y2(t)</math>
 
<math>a * x1(t) + b * x2(t) ---> Sys ---> a * y1(t) + b * y2(t)</math>
  
 +
'''Problem: '''
 
We are given a linear system that behaves as follows,
 
We are given a linear system that behaves as follows,
  
Line 42: Line 43:
 
converting the exponential back to cosine yields the output of the sytem,
 
converting the exponential back to cosine yields the output of the sytem,
  
t*cos(2t)
+
'''System output = t * cos(2t) '''

Latest revision as of 07:29, 18 September 2008

Basics of Linearity

Definition of Linearity: For any constants a and b (that are complext numbers), and inputs x1(t) and x2(t) which yield outputs y1(t) and y2(t),

$ a * x1(t) + b * x2(t) ---> Sys ---> a * y1(t) + b * y2(t) $

Problem: We are given a linear system that behaves as follows,

$ e^{2jt} --> Sys --> t*e^{-2jt} $

and asked to find the response to find the response to cos(2t).


Solution: Using the properties of cosine we can convert cos(2t) to an exponential function.

cos(2t) = $ \frac{e^{2tj}+e^{-2tj}}{2} $

= $ \frac{1}{2}*(x1(t) + x2(t)) $

= $ \frac{1}{2}*x1(t) + \frac{1}{2}*x2(t)) $

Using the defition of linearity above,

a = $ \frac{1}{2} $

b = $ \frac{1}{2} $

x1(t) = $ e^{2tj} $

x2(t) = $ e^{-2tj} $

$ a * x1(t) + b * x2(t) ---> Sys ---> a * y1(t) + b * y2(t) $

yields the following results,

= $ \frac{1}{2}*t*x1(-t) + \frac{1}{2}*t*x2(-t)) $

plugging in for x1(-t) and x2(-t) and factoring out the t,

$ t*\frac{e^{2tj}+e^{-2tj}}{2} $

converting the exponential back to cosine yields the output of the sytem,

System output = t * cos(2t)

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva