(New page: A linear system’s response to <math>e^{2jt}</math> is <math>t*e^{-2jt}</math>, and its response to <math>e^{-2jt}</math> is <math>t*e^{2jt}</math>. What is the system’s response to <...)
 
 
(4 intermediate revisions by the same user not shown)
Line 4: Line 4:
  
  
Well, if we convert <math>\cos(2t)</math> using euler's formula, we get <math> 1/2 * e^{2jt) + 1/2 * e^{-2jt} </math>.
+
Well, if we convert <math>\cos(2t)</math> using euler's formula, we get <math> 1/2 * e^{2jt} + 1/2 * e^{-2jt} </math>.
 +
 
 +
 
 +
Since the system is linear, we can assume that with constants of 1/2,
 +
 
 +
<math> 1/2 * x_1(t) + 1/2*x_2(t) => 1/2*y_1(t)+1/2*y_2(t)</math>
 +
 
 +
So our result is
 +
 
 +
<math> 1/2 * t * e^{-2jt} + 1/2 * t * e^{2jt} </math>
 +
 
 +
Simplifying this yields
 +
 
 +
<math> 1/2 * t * (\cos(-2t) + i\sin(-2t)) + 1/2 * t * (\cos(2t) + i\sin(2t)) </math>
 +
 
 +
Since <math>sin(-t)=-sin(t)</math> and <math>cos(-t) = cos(t)</math> we can simplify further:
 +
 
 +
<math> 1/2*t*(\cos(2t) -i\sin(2t)) + 1/2*t*(\cos(2t)+i\sin(2t)) = t\cos(2t)</math>
 +
 
 +
Thus our result for the input of <math>\cos(2t)</math> is <math>t\cos(2t)</math>

Latest revision as of 18:03, 17 September 2008

A linear system’s response to $ e^{2jt} $ is $ t*e^{-2jt} $, and its response to $ e^{-2jt} $ is $ t*e^{2jt} $.

What is the system’s response to $ \cos(2t) $?


Well, if we convert $ \cos(2t) $ using euler's formula, we get $ 1/2 * e^{2jt} + 1/2 * e^{-2jt} $.


Since the system is linear, we can assume that with constants of 1/2,

$ 1/2 * x_1(t) + 1/2*x_2(t) => 1/2*y_1(t)+1/2*y_2(t) $

So our result is

$ 1/2 * t * e^{-2jt} + 1/2 * t * e^{2jt} $

Simplifying this yields

$ 1/2 * t * (\cos(-2t) + i\sin(-2t)) + 1/2 * t * (\cos(2t) + i\sin(2t)) $

Since $ sin(-t)=-sin(t) $ and $ cos(-t) = cos(t) $ we can simplify further:

$ 1/2*t*(\cos(2t) -i\sin(2t)) + 1/2*t*(\cos(2t)+i\sin(2t)) = t\cos(2t) $

Thus our result for the input of $ \cos(2t) $ is $ t\cos(2t) $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood