(2 intermediate revisions by 2 users not shown) | |||
Line 5: | Line 5: | ||
Very clear answer, I had no problem understanding the wording. As far as I know it was correct. | Very clear answer, I had no problem understanding the wording. As far as I know it was correct. | ||
-Collin Phillips | -Collin Phillips | ||
+ | |||
+ | The answers are short and effective. It is also very well laid out. I also enjoyed the examples. They bring real world situations into play. --Justin Kietzman | ||
+ | |||
+ | Your explanation is concise along with practical examples that help illustrate the point. -Hang Zhang | ||
+ | |||
+ | Good explanation, the examples following were a nice touch. - Kevin Hoyt |
Latest revision as of 12:49, 19 September 2008
Your answer is pretty good. I liked how it was to-the-point yet informative. It is pretty awesome, just shy of how awesome mine is. -Virgil Hsieh
I like your examples and your consideration of all cases of input signals x(t) (including non-bounded ones). Your definitions get the point across, though saying $ |x(t)| < \epsilon $ isn't technically correct, assuming you mean $ \epsilon $ to be a real constant. (One should say $ \forall t \in \mathbb{R}, |x(t)| < \epsilon $.) -Brian Thomas
Very clear answer, I had no problem understanding the wording. As far as I know it was correct. -Collin Phillips
The answers are short and effective. It is also very well laid out. I also enjoyed the examples. They bring real world situations into play. --Justin Kietzman
Your explanation is concise along with practical examples that help illustrate the point. -Hang Zhang
Good explanation, the examples following were a nice touch. - Kevin Hoyt