(34 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
A linear system’s response to <math>e^{2jt}</math> is <math>te^{-2jt}</math>, and its response to <math>e^{-2jt}</math> is <math>te^{2jt}</math>. What is the system’s response to <math>cos(2t)</math>?
+
A linear system’s response to <math>e^{2jt}</math> is <math>te^{-2jt}</math>, and its response to <math>e^{-2jt}</math> is <math>te^{2jt}</math>. What is the system’s response to <math>\cos{(2t)}</math>?
  
 
==Solution==
 
==Solution==
 
If the system is linear, then the following is true:
 
If the system is linear, then the following is true:
 +
  
 
For any <math>x_{1}(t) \; \rightarrow \; y_{1}(t)</math> and <math>x_{2}(t) \; \rightarrow \; y_{2}(t)</math>
 
For any <math>x_{1}(t) \; \rightarrow \; y_{1}(t)</math> and <math>x_{2}(t) \; \rightarrow \; y_{2}(t)</math>
Line 14: Line 15:
  
 
<math>ax_{1}(t) \; + \; bx_{2}(t) \; \rightarrow \; ay_{1}(t) \; + \; by_{2}(t)</math>
 
<math>ax_{1}(t) \; + \; bx_{2}(t) \; \rightarrow \; ay_{1}(t) \; + \; by_{2}(t)</math>
 +
  
  
 
and "conveniently":
 
and "conveniently":
  
<math>e^{2jt} + e^{-2jt} = \cos{2t}</math>
+
<math>e^{2jt} \; + \; e^{-2jt} = \cos{(2t)} \; + \; j \sin{(2t)} \; + \; \cos{(-2t)} \; + \; j \sin{(-2t)}</math> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (by Euler's Formula)
 +
 
 +
<math>=\cos{(2t)} \; + \; j \sin{(2t)} \; + \; \cos{(2t)} \; - \; j \sin{(2t)}</math> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (<math>\cos{(-x)}=\cos{(x)}</math> and <math>\sin{(-x)}=-\sin{(x)}</math>)
 +
 
 +
<font size="4">
 +
<math>=2\cos{(2t)}</math>
 +
</font>
 +
 
 +
 
 +
therefore:
 +
 
 +
 
 +
<math>\cos{(2t)} = \frac{1}{2}\cdot 2\cos{(2t)} = \frac{1}{2}(e^{2jt} \; + \; e^{-2jt})</math>
 +
 
 +
 
 +
and
 +
 
 +
 
 +
<math>\cos{(2t)} \rightarrow \frac{1}{2}(te^{2jt} \; + \; te^{-2jt})</math>
 +
 
 +
<math>=\frac{1}{2}t(e^{2jt} \; + \; e^{-2jt})</math>
 +
 
 +
<math>=\frac{1}{2}t[2\cos{(2t)}]</math>
 +
 
 +
<font size="4">
 +
<math>=t\cos{(2t)}</math>
 +
</font>

Latest revision as of 20:51, 16 September 2008

Problem

A linear system’s response to $ e^{2jt} $ is $ te^{-2jt} $, and its response to $ e^{-2jt} $ is $ te^{2jt} $. What is the system’s response to $ \cos{(2t)} $?

Solution

If the system is linear, then the following is true:


For any $ x_{1}(t) \; \rightarrow \; y_{1}(t) $ and $ x_{2}(t) \; \rightarrow \; y_{2}(t) $

and any complex constants $ a $ and $ b $


then


$ ax_{1}(t) \; + \; bx_{2}(t) \; \rightarrow \; ay_{1}(t) \; + \; by_{2}(t) $


and "conveniently":

$ e^{2jt} \; + \; e^{-2jt} = \cos{(2t)} \; + \; j \sin{(2t)} \; + \; \cos{(-2t)} \; + \; j \sin{(-2t)} $           (by Euler's Formula)

$ =\cos{(2t)} \; + \; j \sin{(2t)} \; + \; \cos{(2t)} \; - \; j \sin{(2t)} $           ($ \cos{(-x)}=\cos{(x)} $ and $ \sin{(-x)}=-\sin{(x)} $)

$ =2\cos{(2t)} $


therefore:


$ \cos{(2t)} = \frac{1}{2}\cdot 2\cos{(2t)} = \frac{1}{2}(e^{2jt} \; + \; e^{-2jt}) $


and


$ \cos{(2t)} \rightarrow \frac{1}{2}(te^{2jt} \; + \; te^{-2jt}) $

$ =\frac{1}{2}t(e^{2jt} \; + \; e^{-2jt}) $

$ =\frac{1}{2}t[2\cos{(2t)}] $

$ =t\cos{(2t)} $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva