Line 10: Line 10:
  
 
Now, according to the problem statement, and let a=b=1 since it is not specified in the problem,
 
Now, according to the problem statement, and let a=b=1 since it is not specified in the problem,
 +
  
 
exp(2jt) -> system -> texp(-2jt) -> *1 -> texp(-2jt)  }
 
exp(2jt) -> system -> texp(-2jt) -> *1 -> texp(-2jt)  }
Line 24: Line 25:
  
 
After putting each of these into the system,
 
After putting each of these into the system,
 +
 +
  
 
cos(2t)+jsin(2t) -> system -> t(cos(2t)-jsin(2t)) -> *1 -> t(cos(2t)-jsin(2t))  }
 
cos(2t)+jsin(2t) -> system -> t(cos(2t)-jsin(2t)) -> *1 -> t(cos(2t)-jsin(2t))  }

Latest revision as of 06:47, 17 September 2008

The Basics of Linearity

According to the definition of linearity given in class,

x1(t) -> system -> y1(t) -> *a -> ay1(t) }

                               } -> + -> ay1(t) + by2(t)

x2(t) -> system -> y2(t) -> *b -> by2(t) }



Now, according to the problem statement, and let a=b=1 since it is not specified in the problem,


exp(2jt) -> system -> texp(-2jt) -> *1 -> texp(-2jt) }

                               } -> + -> texp(-2jt) + texp(2jt)

exp(-2jt) -> system -> texp(2jt) -> *1 -> texp(2jt) }



I've decided to use Euler's formula to change the exponential into a sum of sines and cosines.

exp(2jt)=cos(2t)+jsin(2t) exp(-2jt)=cos(2t)-jsin(2t)

After putting each of these into the system,


cos(2t)+jsin(2t) -> system -> t(cos(2t)-jsin(2t)) -> *1 -> t(cos(2t)-jsin(2t)) }

                                                  } -> + -> t(cos(2t)-jsin(2t)) + t(cos(2t)-jsin(2t))

cos(2t)-jsin(2t) -> system -> t(cos(2t)+jsin(2t)) -> *1 -> t(cos(2t)-jsin(2t)) }


Next, t(cos(2t)-jsin(2t)) + t(cos(2t)-jsin(2t)) = 2tcos(2t), which is the response to 2cos(t). From here, it is a simple matter of dividing by 2.


The system's response to cos(2t) is tcos(2t).

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva