(3 intermediate revisions by the same user not shown)
Line 5: Line 5:
 
<math>e^{(2jt)} = cos{(2t)} + jsin{(2t)} -> system -> t*{(cos{(2t)} - jsin{(2t)})}\,</math><br>
 
<math>e^{(2jt)} = cos{(2t)} + jsin{(2t)} -> system -> t*{(cos{(2t)} - jsin{(2t)})}\,</math><br>
 
<math>e^{(-2jt)} = cos{(2t)} - jsin{(2t)} -> system -> t*{(cos{(2t)} + jsin{(2t)})}\,</math><br><br>
 
<math>e^{(-2jt)} = cos{(2t)} - jsin{(2t)} -> system -> t*{(cos{(2t)} + jsin{(2t)})}\,</math><br><br>
 +
 +
When the following equation,
 +
<math>cos{(2t)} = \frac{1}{2}e^{(2jt)} + \frac{1}{2}e^{(-2jt)} =</math><math> \frac{1}{2}(cos{(2t)} + jsin{(2t)}) + \frac{1}{2}(cos{(2t)} - jsin{(2t)})</math>
 +
 +
goes through the system, we get
 +
<math>\frac{1}{2}(t*{(cos{(2t)} - jsin{(2t)})}) + \frac{1}{2}t*{(cos{(2t)} + jsin{(2t)})} = \frac{1}{2}tcos{(2t)} + \frac{1}{2}tcos{(2t)} = tcos(2t)</math>

Latest revision as of 16:51, 19 September 2008

Part B: The basics of linearity

System’s response to cos(2t)

Using Euler's formula, we get

$ e^{(2jt)} = cos{(2t)} + jsin{(2t)} -> system -> t*{(cos{(2t)} - jsin{(2t)})}\, $
$ e^{(-2jt)} = cos{(2t)} - jsin{(2t)} -> system -> t*{(cos{(2t)} + jsin{(2t)})}\, $

When the following equation, $ cos{(2t)} = \frac{1}{2}e^{(2jt)} + \frac{1}{2}e^{(-2jt)} = $$ \frac{1}{2}(cos{(2t)} + jsin{(2t)}) + \frac{1}{2}(cos{(2t)} - jsin{(2t)}) $

goes through the system, we get $ \frac{1}{2}(t*{(cos{(2t)} - jsin{(2t)})}) + \frac{1}{2}t*{(cos{(2t)} + jsin{(2t)})} = \frac{1}{2}tcos{(2t)} + \frac{1}{2}tcos{(2t)} = tcos(2t) $

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman