(Example of Linearity and its proof)
m (Example of non-linearity and its proof)
 
(2 intermediate revisions by the same user not shown)
Line 30: Line 30:
 
'''Proof:'''
 
'''Proof:'''
  
<math>x(t) \to System \to y(t)=e^{x(t)} \to Time Shift(t0) \to z(t)=y(t-t0)</math>
+
<math>x1(t) \to System \to y1(t)=e^{x1(t)} \to Scalar multiplication(*a) \to ae^{x1(t)} </math>
  
<math>\,                                                            =e^{x(t-t0)}\,</math>
+
<math>x2(t) \to System \to y2(t)=e^{x2(t)}\to Scalar multiplication(*b) \to be^{x2(t)} </math>
  
 +
<math>ae^{x1(t)} and be^{x2(t)} \to SUM \to ae^{x1(t)}+be^{x2(t)}</math>
  
  
<math>x(t) \to Time Shift(t0) \to y(t)=x(t-t0) \to System \to z(t)=e^{y(t)}</math>
 
  
<math>\,                                                            =e^{x(t-t0)}\,</math>
+
<math>x1(t) \to Scalar multiplication(*a) \to ax1(t)</math>
  
 +
<math>x2(t) \to Scalar multiplication(*b) \to bx2(t)</math>
  
Both cascades yielded the same outputs, thus <math>\,y(t)=e^{x(t)}\,</math> is time invariant.
+
<math>ax1(t) and bx2(t) \to SUM \to \to System \to e^{ax1(2t)+bx2(2t)}=e^{ax1(2t)}e^{bx2(2t)}</math>
 +
 
 +
Those two yielded different outputs, thus it is not linear.

Latest revision as of 16:53, 12 September 2008

LINEARITY

Linearity, in my definition, means that superposition always works. In other words, summation of inputs yield summation of outputs.

Example of Linearity and its proof

$ \,y(t)=x(2t)\, $


Proof:

$ x1(t) \to System \to y1(t)=x1(2t) \to Scalar multiplication(*a) \to ax1(2t) $

$ x2(t) \to System \to y2(t)=x2(2t) \to Scalar multiplication(*b) \to bx2(2t) $

$ ax1(2t) and bx2(2t) \to SUM \to ax1(2t)+bx2(2t) $


$ x1(t) \to Scalar multiplication(*a) \to ax1(t) $

$ x2(t) \to Scalar multiplication(*b) \to bx2(t) $

$ ax1(t) and bx2(t) \to SUM \to \to System \to ax1(2t)+bx2(2t) $

Those two yielded the same outputs thus it is linear.

Example of non-linearity and its proof

$ \,y(t)=e^{x(t)}\, $


Proof:

$ x1(t) \to System \to y1(t)=e^{x1(t)} \to Scalar multiplication(*a) \to ae^{x1(t)} $

$ x2(t) \to System \to y2(t)=e^{x2(t)}\to Scalar multiplication(*b) \to be^{x2(t)} $

$ ae^{x1(t)} and be^{x2(t)} \to SUM \to ae^{x1(t)}+be^{x2(t)} $


$ x1(t) \to Scalar multiplication(*a) \to ax1(t) $

$ x2(t) \to Scalar multiplication(*b) \to bx2(t) $

$ ax1(t) and bx2(t) \to SUM \to \to System \to e^{ax1(2t)+bx2(2t)}=e^{ax1(2t)}e^{bx2(2t)} $

Those two yielded different outputs, thus it is not linear.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang