(8 intermediate revisions by the same user not shown)
Line 2: Line 2:
  
  
'''Time invariant Signal'''
+
'''Time Invariant Signal'''
  
<math>s_1(t) = 5t</math>
+
<math>S_1(t) = 5x(t)</math>
  
<math>x(t) -> s_1(t) </math>
+
<math>S_2(t) = t - t_0</math>
<math>s_1(t) = 5t</math>
+
 
 +
<math>x(t) -> S_1(t) -> S_2(t) -> 5x(t - t_0)</math>
 +
 
 +
<math>x(t) -> S_2(t) -> S_1(t) -> 5x(t - t_0)</math>
 +
 
 +
This means that <math>S_1(t) = 5x(t)</math> is a time invariant signal.
 +
 
 +
'''Time Variant Signal'''
 +
 
 +
<math>S_1(t) = x(1-t)</math>
 +
 
 +
<math>S_2(t) = t - t_0</math>
 +
 
 +
<math>x(t) -> S_1(t) -> S_2(t) -> 5x(1 - t + t_0)</math>
 +
 
 +
<math>x(t) -> S_2(t) -> S_1(t) -> 5x(1 - t - t_0)</math>
 +
 
 +
This means that <math>S_1(t) = x(1-t)</math> is a time variant signal.

Latest revision as of 16:22, 12 September 2008

A system is time invariant if for any time shifted input signal the system produces a shifted output such that if an input $ x(t) $ produced an output $ y(t) $ then the input $ x(t + t_0) $ would produced the output $ y(t + t_0) $


Time Invariant Signal

$ S_1(t) = 5x(t) $

$ S_2(t) = t - t_0 $

$ x(t) -> S_1(t) -> S_2(t) -> 5x(t - t_0) $

$ x(t) -> S_2(t) -> S_1(t) -> 5x(t - t_0) $

This means that $ S_1(t) = 5x(t) $ is a time invariant signal.

Time Variant Signal

$ S_1(t) = x(1-t) $

$ S_2(t) = t - t_0 $

$ x(t) -> S_1(t) -> S_2(t) -> 5x(1 - t + t_0) $

$ x(t) -> S_2(t) -> S_1(t) -> 5x(1 - t - t_0) $

This means that $ S_1(t) = x(1-t) $ is a time variant signal.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett