(Example of Time invariant system and its proof)
(Example of Time variant system and its proof)
 
(9 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
 
== TIME INVARIANCE ==
 
== TIME INVARIANCE ==
 
Time invariance, in my definition, is such a system that does not stretch or shrink the input function and does not change time shift of input is called "time invariance."
 
Time invariance, in my definition, is such a system that does not stretch or shrink the input function and does not change time shift of input is called "time invariance."
Line 10: Line 9:
 
'''Proof:'''
 
'''Proof:'''
  
<math>x(t) \to System \to y(t)=e^{x(t)} \to Time Shift(t<sub>0</sub> \to z(t)=y(t-t<sub>0</sub>)</math>
+
<math>x(t) \to System \to y(t)=e^{x(t)} \to Time Shift(t0) \to z(t)=y(t-t0)</math>
 +
 
 +
<math>\,                                                            =e^{x(t-t0)}\,</math>
 +
 
 +
 
 +
 
 +
<math>x(t) \to Time Shift(t0) \to y(t)=x(t-t0) \to System \to z(t)=e^{y(t)}</math>
 +
 
 +
<math>\,                                                            =e^{x(t-t0)}\,</math>
 +
 
 +
 
 +
Both cascades yielded the same outputs, thus <math>\,y(t)=e^{x(t)}\,</math> is time invariant.
 +
 
 +
== Example of Time variant system and its proof ==
 +
<math>\,y(t)=x(2t)\,</math>
 +
 
 +
 
 +
'''Proof:'''
 +
 
 +
<math>x(t) \to System \to y(t)=x(2t) \to Time Shift(t0) \to z(t)=y(t-t0)</math>
 +
 
 +
<math>\,                                                            =x(2t-2t0)\,</math>
 +
 
 +
 
 +
 
 +
<math>x(t) \to Time Shift(t0) \to y(t)=x(t-t0) \to System \to z(t)=y(2t)</math>
 +
 
 +
<math>\,                                                            =x(2t-t0)\,</math>
 +
 
 +
 
 +
They yielded different outputs, thus <math>\,y(t)=x(2t)\,</math> is time-variant.

Latest revision as of 16:22, 12 September 2008

TIME INVARIANCE

Time invariance, in my definition, is such a system that does not stretch or shrink the input function and does not change time shift of input is called "time invariance."


Example of Time invariant system and its proof

$ \,y(t)=e^{x(t)}\, $


Proof:

$ x(t) \to System \to y(t)=e^{x(t)} \to Time Shift(t0) \to z(t)=y(t-t0) $

$ \, =e^{x(t-t0)}\, $


$ x(t) \to Time Shift(t0) \to y(t)=x(t-t0) \to System \to z(t)=e^{y(t)} $

$ \, =e^{x(t-t0)}\, $


Both cascades yielded the same outputs, thus $ \,y(t)=e^{x(t)}\, $ is time invariant.

Example of Time variant system and its proof

$ \,y(t)=x(2t)\, $


Proof:

$ x(t) \to System \to y(t)=x(2t) \to Time Shift(t0) \to z(t)=y(t-t0) $

$ \, =x(2t-2t0)\, $


$ x(t) \to Time Shift(t0) \to y(t)=x(t-t0) \to System \to z(t)=y(2t) $

$ \, =x(2t-t0)\, $


They yielded different outputs, thus $ \,y(t)=x(2t)\, $ is time-variant.

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin