(TIME-INVARIANT SYSTEM)
(TIME-VARIANT SYSTEM)
 
(One intermediate revision by the same user not shown)
Line 20: Line 20:
  
  
'''<math>W(t) = Z(t)</math>'''
+
'''<math>W(t) = Z(t) \Rightarrow</math>''' The system is time-invariant
  
 
== TIME-VARIANT SYSTEM ==
 
== TIME-VARIANT SYSTEM ==
 +
 +
ECE 301 lectures are a time variant system.  If I show up to class on time on X day, I will listen to the entire lecture (signal).  If my friend on the other hand, shows up 10 minutes late to lecture, he will have missed 10 minutes of lecture (signal).  Therefore, ECE 301 lectures are a "time-variant" system.

Latest revision as of 15:51, 12 September 2008

TIME INVARIANCE

Let " $ \Rightarrow $ " represent a system.

If for any signal $ X(t)\Rightarrow Y(t) $ implies that $ X(t - t_o)\Rightarrow Y(t - t_o) $ then the system is time invariant.

TIME-INVARIANT SYSTEM

$ X(t)\Rightarrow Y(t) = a*X(t) $ where $ a \in \mathbb{{C}} $ is a time invariant system.


PROOF

$ X(t)\Rightarrow Y(t) = a*X(t) \to [time delay] \to Z(t) = Y(t - t_o) = a*X(t - t_o) $


$ X(t)\to [time delay] \to Y(t) = X(t - t_o) \Rightarrow W(t) = a*Y(t) = a*X(t - t_o) $


$ W(t) = Z(t) \Rightarrow $ The system is time-invariant

TIME-VARIANT SYSTEM

ECE 301 lectures are a time variant system. If I show up to class on time on X day, I will listen to the entire lecture (signal). If my friend on the other hand, shows up 10 minutes late to lecture, he will have missed 10 minutes of lecture (signal). Therefore, ECE 301 lectures are a "time-variant" system.

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal