(6 intermediate revisions by the same user not shown) | |||
Line 28: | Line 28: | ||
IF eq 1 = eq 2 the '''system is linear'''. | IF eq 1 = eq 2 the '''system is linear'''. | ||
− | '''a,b''' are complex numbers. | + | '''a,b''' are complex numbers. |
+ | |||
+ | |||
+ | |||
+ | '''Example of a linear System'''. Y[n]=X[n-1]. | ||
+ | |||
+ | |||
+ | Proof: X1[n]--->'''system'''--->Y1[n]=X1[n-1]--->'''a'''--->a.X1[n-1] | ||
+ | |||
+ | |||
+ | X2[n]--->'''system'''--->Y2[n]=X2[n-1]--->'''b'''--->b.X2[n-1] | ||
+ | |||
+ | |||
+ | Now a.X1[n-1] + b.X2[n-1]= Z(n) | ||
+ | |||
+ | |||
+ | |||
+ | '''And''' | ||
+ | |||
+ | |||
+ | X1[n]---->'''a'''-------->a.X1[n] | ||
+ | X2[n]---->'''b'''-------->b.X2[n] | ||
+ | |||
+ | |||
+ | '''{'''a.X1[n]+b.X2[n]'''}'''----->'''System'''------>W[n-1] '''=''' a.X1[n-1] + b.X2[n-1] | ||
+ | |||
+ | |||
+ | '''As the 2 results match the System is Linear''' | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | '''Example Of a non-linear System''' Y[t]=X[t]<math>^2</math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | now If | ||
+ | |||
+ | |||
+ | X1(t)----> '''System'''---->Y1(t) =X1[t]<math>^2</math> <math>\times</math>'''a'''---->a.X1[t]<math>^2</math> | ||
+ | |||
+ | |||
+ | X2(t)----> '''System'''---->Y2(t) =X2[t]<math>^2</math> <math>\times</math>'''b'''---->b.X2[t]<math>^2</math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | a.X1[t]<math>^2</math> + b.X2[t]<math>^2</math>= Z(t) equation 1 | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | and | ||
+ | |||
+ | |||
+ | |||
+ | X1(t)<math>\times</math>'''a'''----->X1(t).a | ||
+ | |||
+ | |||
+ | |||
+ | X2(t)<math>\times</math>'''b'''----->X2(t).b | ||
+ | |||
+ | |||
+ | '''now ''' | ||
+ | {X1(t).a+X2(t).b}------>'''System'''----->{X1(t).a+X2(t).b}<math>^2</math> equation 2 | ||
+ | |||
+ | |||
+ | |||
+ | IF eq 1 '''not equal to''' eq 2 the '''system is not linear'''. | ||
+ | '''a,b''' are complex numbers. |
Latest revision as of 12:51, 12 September 2008
now If
X(t)-----> System---->z1(t)$ \times $a---->a.z1(t)
Y(t)-----> System---->z2(t)$ \times $b---->b.z2(t)
a.z1(t)+bz2(t)----->Z(t) equation 1
and
X(t)$ \times $a----->w1(t).a
Y(t)$ \times $b----->w2(t).b
now
w1(t).a+w2(t).b------>System----->W(t) equation 2
IF eq 1 = eq 2 the system is linear.
a,b are complex numbers.
Example of a linear System. Y[n]=X[n-1].
Proof: X1[n]--->system--->Y1[n]=X1[n-1]--->a--->a.X1[n-1]
X2[n]--->system--->Y2[n]=X2[n-1]--->b--->b.X2[n-1]
Now a.X1[n-1] + b.X2[n-1]= Z(n)
And
X1[n]---->a-------->a.X1[n] X2[n]---->b-------->b.X2[n]
{a.X1[n]+b.X2[n]}----->System------>W[n-1] = a.X1[n-1] + b.X2[n-1]
As the 2 results match the System is Linear
Example Of a non-linear System Y[t]=X[t]$ ^2 $
now If
X1(t)----> System---->Y1(t) =X1[t]$ ^2 $ $ \times $a---->a.X1[t]$ ^2 $
X2(t)----> System---->Y2(t) =X2[t]$ ^2 $ $ \times $b---->b.X2[t]$ ^2 $
a.X1[t]$ ^2 $ + b.X2[t]$ ^2 $= Z(t) equation 1
and
X1(t)$ \times $a----->X1(t).a
X2(t)$ \times $b----->X2(t).b
now
{X1(t).a+X2(t).b}------>System----->{X1(t).a+X2(t).b}$ ^2 $ equation 2
IF eq 1 not equal to eq 2 the system is not linear.
a,b are complex numbers.