(3 intermediate revisions by the same user not shown) | |||
Line 3: | Line 3: | ||
the cascade | the cascade | ||
− | x[n]----->Time delay ----> System -----> z[n] | + | *x[n]----->Time delay ----> System -----> z[n] |
yields the same output as | yields the same output as | ||
− | x[n]----->system----->Time Delay-----> y[n] | + | *x[n]----->system----->Time Delay-----> y[n] |
== Time Invariance check == | == Time Invariance check == | ||
− | Let us check for y[n] = x[n]^2 | + | Let us check for '''y[n] = x[n]^2''' |
− | <math>y[x[n-n0]] = x{[n-n0]^2}</math> | + | *<math>y[x[n-n0]] = x{[n-n0]^2}</math> |
Also, | Also, | ||
− | <math>y[n-n0] = x{[n-n0]^2}</math> | + | *<math>y[n-n0] = x{[n-n0]^2}</math> |
+ | Thus the above system is '''time invariant''' | ||
+ | |||
+ | |||
+ | == Time Variance check == | ||
+ | |||
+ | Let us test for | ||
+ | '''y[n]=cos[nQ]*x[n]''' | ||
+ | |||
+ | *<math>y[x[n-n0]]=cos[nQ]*x[n-n0]</math> | ||
+ | Also, | ||
+ | *<math>y[n-n0]= cos[n-n0]Q* x[n-n0]</math> | ||
+ | |||
+ | Thus from above we can say that the system is '''time variant''' |
Latest revision as of 10:11, 12 September 2008
Time invariance
A system is called time invariant if the cascade
- x[n]----->Time delay ----> System -----> z[n]
yields the same output as
- x[n]----->system----->Time Delay-----> y[n]
Time Invariance check
Let us check for y[n] = x[n]^2
- $ y[x[n-n0]] = x{[n-n0]^2} $
Also,
- $ y[n-n0] = x{[n-n0]^2} $
Thus the above system is time invariant
Time Variance check
Let us test for
y[n]=cos[nQ]*x[n]
- $ y[x[n-n0]]=cos[nQ]*x[n-n0] $
Also,
- $ y[n-n0]= cos[n-n0]Q* x[n-n0] $
Thus from above we can say that the system is time variant