(New page: == Linearity == So a system is linear if its inputs x1(t), x2(t) or (x1[n], x2[n] for Discrete Time signals) yield outputs y1(t), y2(t) such as the response: a*x1(t)+b*x2(t) => a*y1(t)+b...)
 
 
(12 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
 
== Linearity ==
 
== Linearity ==
  
Line 7: Line 6:
 
== Example: Linear ==
 
== Example: Linear ==
  
 +
One-Way
  
 +
x1(t) -> [sys] -> y1(t) = cos(t) -> (X)*a +++
 +
                            =  a*cos(t)+b*sin(t) = z(t)
 +
x2(t) -> [sys] -> y2(t) = sin(t) -> (X)*b +++
  
  
 +
Reverse-Way
 +
 +
cos(t) = x1(t)*a +++
 +
            =  a*cos(t)+b*sin(t) -> [sys] -> w(t)= a*cos(t)+b*sin(t)
 +
sin(t) = x2(t)*b +++
 +
 +
 +
since w(t) = z(t) then the inputs are the same as the outputs which makes this a linear system.
  
 
== Example: Non-Linear ==
 
== Example: Non-Linear ==
 +
 +
One-way
  
  
Line 17: Line 30:
  
 
x1[n] -> [sys] -> y1[n]=2*x1[n]^3 -> (X)*a  +++
 
x1[n] -> [sys] -> y1[n]=2*x1[n]^3 -> (X)*a  +++
                                                = a*2*x1[n]^3+2*b*x2[n]^3
+
                                  = a*2*x1[n]^3+2*b*x2[n]^3
 
x2[n] -> [sys] -> y2[n]=2*x2[n]^3 -> (X)*b  +++
 
x2[n] -> [sys] -> y2[n]=2*x2[n]^3 -> (X)*b  +++
 +
 +
 +
Reverse-way
 +
 +
 +
x1[n] -> (X)*a +++
 +
              = a*x1[n]+b*x2[n] -> [sys] -> 2*z[n]^3 = 2*(a*x1[n] + b*x2[n])^3
 +
x2[n] -> (X)*b +++
 +
 +
 +
However, since 2*a*x1[n]^3 + 2*b*x2[n] != 2(a*x1[n] + b*x2[n])^3 = 8*a^3*x1[n]^3 + 8*b^3*x2[n]^3
 +
the system is not linear because the two inflexive operations are not equal to each other.

Latest revision as of 11:21, 12 September 2008

Linearity

So a system is linear if its inputs x1(t), x2(t) or (x1[n], x2[n] for Discrete Time signals) yield outputs y1(t), y2(t) such as the response: a*x1(t)+b*x2(t) => a*y1(t)+b*y2(t).


Example: Linear

One-Way

x1(t) -> [sys] -> y1(t) = cos(t) -> (X)*a +++

                            =   a*cos(t)+b*sin(t) = z(t)

x2(t) -> [sys] -> y2(t) = sin(t) -> (X)*b +++


Reverse-Way

cos(t) = x1(t)*a +++

            =   a*cos(t)+b*sin(t) -> [sys] -> w(t)= a*cos(t)+b*sin(t)

sin(t) = x2(t)*b +++


since w(t) = z(t) then the inputs are the same as the outputs which makes this a linear system.

Example: Non-Linear

One-way


y[n] = 2*x[n]^3

x1[n] -> [sys] -> y1[n]=2*x1[n]^3 -> (X)*a +++

                                 = a*2*x1[n]^3+2*b*x2[n]^3

x2[n] -> [sys] -> y2[n]=2*x2[n]^3 -> (X)*b +++


Reverse-way


x1[n] -> (X)*a +++

             = a*x1[n]+b*x2[n] -> [sys] -> 2*z[n]^3 = 2*(a*x1[n] + b*x2[n])^3

x2[n] -> (X)*b +++


However, since 2*a*x1[n]^3 + 2*b*x2[n] != 2(a*x1[n] + b*x2[n])^3 = 8*a^3*x1[n]^3 + 8*b^3*x2[n]^3 the system is not linear because the two inflexive operations are not equal to each other.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett