(→Part B) |
(→Part B: Find input given output) |
||
(4 intermediate revisions by the same user not shown) | |||
Line 32: | Line 32: | ||
== Part B: Find input given output == | == Part B: Find input given output == | ||
− | + | ||
+ | The given output is: | ||
+ | |||
+ | <math>\,Y[n]=u[n-1]\,</math> | ||
+ | |||
+ | |||
+ | This can be re-written as: | ||
+ | |||
+ | <math>\,Y[n]=\sum_{k=0}^{\infty}\delta [n-(k+1)]\,</math> | ||
+ | |||
+ | <math>\,Y[n]=\delta [n-1]+\delta [n-2]+\delta [n-3]+\ldots +\delta [n-(k+1)]\,</math> | ||
+ | |||
+ | <math>\,Y[n]=Y_0[n]+\frac{1}{4}Y_1[n]+\frac{1}{9}Y_2[n]+\ldots +\frac{1}{(k+1)^2}Y_k\,</math> | ||
+ | |||
+ | |||
+ | Because the system is assumed to be linear, we can write the input as | ||
+ | |||
+ | <math>\,X[n]=X_0[n]+\frac{1}{4}X_1[n]+\frac{1}{9}X_2[n]+\ldots +\frac{1}{(k+1)^2}X_k\,</math> | ||
+ | |||
+ | <math>\,X[n]=\delta [n]+\frac{1}{4}\delta [n-1]+\frac{1}{9}\delta [n-2]+\ldots +\frac{1}{(k+1)^2}\delta [n-k]\,</math> | ||
+ | |||
+ | <math>\,X[n]=\sum_{k=0}^{\infty}\frac{1}{(k+1)^2}\delta[n-k]\,</math> | ||
+ | |||
+ | |||
+ | Therefore, the input is: | ||
+ | |||
+ | <math>\,X[n]=\frac{1}{(n+1)^2}u[n]\,</math> when <math>\,n\not= -1\,</math> | ||
+ | |||
+ | <math>\,X[n]=0\,</math> otherwise |
Latest revision as of 20:22, 11 September 2008
Part A: Can the system be time invariant?
The system cannot be time invariant.
For instance, the input
$ \,X_0[n]=\delta [n]\, $
yields the output
$ \,Y_0[n]=\delta [n-1]\, $
Thus,
$ \,Y_0[n-1]=\delta [n-2]\, $
However, the input
$ \,X_0[n-1]=\delta [n-1]=X_1[n]\, $
yields the output
$ \,Y_1[n]=4\delta[n-2]\, $
Since these two are not equal
$ \,\delta [n-2]\not= 4\delta[n-2]\, $
the system is time variant (by not fitting the definition of time invariance).
Part B: Find input given output
The given output is:
$ \,Y[n]=u[n-1]\, $
This can be re-written as:
$ \,Y[n]=\sum_{k=0}^{\infty}\delta [n-(k+1)]\, $
$ \,Y[n]=\delta [n-1]+\delta [n-2]+\delta [n-3]+\ldots +\delta [n-(k+1)]\, $
$ \,Y[n]=Y_0[n]+\frac{1}{4}Y_1[n]+\frac{1}{9}Y_2[n]+\ldots +\frac{1}{(k+1)^2}Y_k\, $
Because the system is assumed to be linear, we can write the input as
$ \,X[n]=X_0[n]+\frac{1}{4}X_1[n]+\frac{1}{9}X_2[n]+\ldots +\frac{1}{(k+1)^2}X_k\, $
$ \,X[n]=\delta [n]+\frac{1}{4}\delta [n-1]+\frac{1}{9}\delta [n-2]+\ldots +\frac{1}{(k+1)^2}\delta [n-k]\, $
$ \,X[n]=\sum_{k=0}^{\infty}\frac{1}{(k+1)^2}\delta[n-k]\, $
Therefore, the input is:
$ \,X[n]=\frac{1}{(n+1)^2}u[n]\, $ when $ \,n\not= -1\, $
$ \,X[n]=0\, $ otherwise