(Part A)
 
Line 5: Line 5:
  
 
<math>\,\ z(t) = (k+1+no)^2 \delta[(n-no)-(k + 1)]</math>
 
<math>\,\ z(t) = (k+1+no)^2 \delta[(n-no)-(k + 1)]</math>
 +
===Part B===
 +
If we set k = 0 then the answer seems easier to get
 +
 +
i.e. <math>\,\ \delta(n - 1) </math> and now <math>\,\ X[n] = u(n)</math>

Latest revision as of 19:17, 11 September 2008

Part A

If we use the same procedure as we did in HW2D then we will find out it is not time variant. The we get

$ \,\ y(t)= (k+1)^2 \delta[(n-no)-(k + 1)] $

$ \,\ z(t) = (k+1+no)^2 \delta[(n-no)-(k + 1)] $

Part B

If we set k = 0 then the answer seems easier to get

i.e. $ \,\ \delta(n - 1) $ and now $ \,\ X[n] = u(n) $

Alumni Liaison

EISL lab graduate

Mu Qiao