(→Part A) |
|||
Line 5: | Line 5: | ||
<math>\,\ z(t) = (k+1+no)^2 \delta[(n-no)-(k + 1)]</math> | <math>\,\ z(t) = (k+1+no)^2 \delta[(n-no)-(k + 1)]</math> | ||
+ | ===Part B=== | ||
+ | If we set k = 0 then the answer seems easier to get | ||
+ | |||
+ | i.e. <math>\,\ \delta(n - 1) </math> and now <math>\,\ X[n] = u(n)</math> |
Latest revision as of 19:17, 11 September 2008
Part A
If we use the same procedure as we did in HW2D then we will find out it is not time variant. The we get
$ \,\ y(t)= (k+1)^2 \delta[(n-no)-(k + 1)] $
$ \,\ z(t) = (k+1+no)^2 \delta[(n-no)-(k + 1)] $
Part B
If we set k = 0 then the answer seems easier to get
i.e. $ \,\ \delta(n - 1) $ and now $ \,\ X[n] = u(n) $