(New page: == part a == it can't be a time invariant because output is not same. <math>X_k[n] = \delta[n-k]</math> <math>\delta[n-k]\rightarrow time delay\rightarrow\delta[n-k-n_0]\rightarrow sys...) |
|||
(2 intermediate revisions by the same user not shown) | |||
Line 7: | Line 7: | ||
<math>\delta[n-k]\rightarrow time delay\rightarrow\delta[n-k-n_0]\rightarrow system \rightarrow (k+n_0+1)^2\delta[n-(k+n_0+1)]</math> | <math>\delta[n-k]\rightarrow time delay\rightarrow\delta[n-k-n_0]\rightarrow system \rightarrow (k+n_0+1)^2\delta[n-(k+n_0+1)]</math> | ||
− | <math>\delta[n-k]\rightarrow system \rightarrow Y_k[n] \rightarrow</math> | + | <math>\delta[n-k]\rightarrow system \rightarrow Y_k[n] \rightarrow time delay \rightarrow (k+1)^2\delta[n-(k+n_0+1)] </math> |
+ | |||
+ | |||
+ | == part b == | ||
+ | since it is linear | ||
+ | input would be X[n] = u[n] |
Latest revision as of 18:36, 11 September 2008
part a
it can't be a time invariant because output is not same.
$ X_k[n] = \delta[n-k] $
$ \delta[n-k]\rightarrow time delay\rightarrow\delta[n-k-n_0]\rightarrow system \rightarrow (k+n_0+1)^2\delta[n-(k+n_0+1)] $
$ \delta[n-k]\rightarrow system \rightarrow Y_k[n] \rightarrow time delay \rightarrow (k+1)^2\delta[n-(k+n_0+1)] $
part b
since it is linear input would be X[n] = u[n]