(→Example of a Time Variant System) |
|||
(One intermediate revision by the same user not shown) | |||
Line 41: | Line 41: | ||
The following system is time variant: | The following system is time variant: | ||
− | <math>\,s(t)=\,</math> | + | <math>\,s(t)=2x(3t-3)\,</math> |
+ | |||
+ | |||
+ | '''Proof:''' | ||
+ | |||
+ | We have a function <math>\,x(t)\,</math>. | ||
+ | |||
+ | After applying the function to the system <math>\,s(t)\,</math>, we get: | ||
+ | |||
+ | <math>\,y(t)=2x(3t-3)\,</math> | ||
+ | |||
+ | Thus, | ||
+ | |||
+ | <math>\,y(t-t_o)=\,</math> | ||
+ | |||
+ | <math>\,2x(3(t-t_o)-3)=\,</math> | ||
+ | |||
+ | <math>\,2x(3t-3t_o-3)\,</math> | ||
+ | |||
+ | |||
+ | Now, apply <math>\,x(t-t_o)\,</math> to the system <math>\,s(t)\,</math>: | ||
+ | |||
+ | <math>\,2x((3t-3)-t_o)\,</math> | ||
+ | |||
+ | <math>\,2x(3t-3-t_o)\,</math> | ||
+ | |||
+ | |||
+ | Since these two are not equal | ||
+ | |||
+ | <math>\,2x(3t-3t_o-3)\not= 2x(3t-3-t_o)\,</math> | ||
+ | |||
+ | the system is time variant. |
Latest revision as of 19:05, 11 September 2008
Definition of Time Invariance
A system $ \,s(t)\, $ is called time invariant if for any input signal $ \,x(t)\, $ yielding output signal $ \,y(t)\, $ and for any $ \,t_o\in\mathbb{R}\, $, the response to $ \,x(t-t_o)\, $ is $ \,y(t-t_o)\, $.
Example of a Time Invariant System
The following system is time invariant:
$ \,s(t)=2x(t-3)\, $
Proof:
We have a function $ \,x(t)\, $.
After applying the function to the system $ \,s(t)\, $, we get:
$ \,y(t)=2x(t-3)\, $
Thus,
$ \,y(t-t_o)=\, $
$ \,2x((t-t_o)-3)=\, $
$ \,2x(t-t_o-3)\, $
Now, apply $ \,x(t-t_o)\, $ to the system $ \,s(t)\, $:
$ \,2x((t-3)-t_o)\, $
$ \,2x(t-3-t_o)\, $
Since these two are equal
$ \,2x(t-t_o-3)=2x(t-3-t_o)\, $
the system is time invariant.
Example of a Time Variant System
The following system is time variant:
$ \,s(t)=2x(3t-3)\, $
Proof:
We have a function $ \,x(t)\, $.
After applying the function to the system $ \,s(t)\, $, we get:
$ \,y(t)=2x(3t-3)\, $
Thus,
$ \,y(t-t_o)=\, $
$ \,2x(3(t-t_o)-3)=\, $
$ \,2x(3t-3t_o-3)\, $
Now, apply $ \,x(t-t_o)\, $ to the system $ \,s(t)\, $:
$ \,2x((3t-3)-t_o)\, $
$ \,2x(3t-3-t_o)\, $
Since these two are not equal
$ \,2x(3t-3t_o-3)\not= 2x(3t-3-t_o)\, $
the system is time variant.