(Example of a Time Variant System)
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
== Definition of Time Invariance ==
 
== Definition of Time Invariance ==
Bleck
+
A system <math>\,s(t)\,</math> is called time invariant if for any input signal <math>\,x(t)\,</math> yielding output signal <math>\,y(t)\,</math> and for any <math>\,t_o\in\mathbb{R}\,</math>, the response to <math>\,x(t-t_o)\,</math> is <math>\,y(t-t_o)\,</math>.
  
 
== Example of a Time Invariant System ==
 
== Example of a Time Invariant System ==
ROFL
+
The following system is time invariant:
 +
 
 +
<math>\,s(t)=2x(t-3)\,</math>
 +
 
 +
 
 +
'''Proof:'''
 +
 
 +
We have a function <math>\,x(t)\,</math>.
 +
 
 +
After applying the function to the system <math>\,s(t)\,</math>, we get:
 +
 
 +
<math>\,y(t)=2x(t-3)\,</math>
 +
 
 +
Thus,
 +
 
 +
<math>\,y(t-t_o)=\,</math>
 +
 
 +
<math>\,2x((t-t_o)-3)=\,</math>
 +
 
 +
<math>\,2x(t-t_o-3)\,</math>
 +
 
 +
 
 +
Now, apply <math>\,x(t-t_o)\,</math> to the system <math>\,s(t)\,</math>:
 +
 
 +
<math>\,2x((t-3)-t_o)\,</math>
 +
 
 +
<math>\,2x(t-3-t_o)\,</math>
 +
 
 +
 
 +
Since these two are equal
 +
 
 +
<math>\,2x(t-t_o-3)=2x(t-3-t_o)\,</math>
 +
 
 +
the system is time invariant.
  
 
== Example of a Time Variant System ==
 
== Example of a Time Variant System ==
LAWL
+
The following system is time variant:
 +
 
 +
<math>\,s(t)=2x(3t-3)\,</math>
 +
 
 +
 
 +
'''Proof:'''
 +
 
 +
We have a function <math>\,x(t)\,</math>.
 +
 
 +
After applying the function to the system <math>\,s(t)\,</math>, we get:
 +
 
 +
<math>\,y(t)=2x(3t-3)\,</math>
 +
 
 +
Thus,
 +
 
 +
<math>\,y(t-t_o)=\,</math>
 +
 
 +
<math>\,2x(3(t-t_o)-3)=\,</math>
 +
 
 +
<math>\,2x(3t-3t_o-3)\,</math>
 +
 
 +
 
 +
Now, apply <math>\,x(t-t_o)\,</math> to the system <math>\,s(t)\,</math>:
 +
 
 +
<math>\,2x((3t-3)-t_o)\,</math>
 +
 
 +
<math>\,2x(3t-3-t_o)\,</math>
 +
 
 +
 
 +
Since these two are not equal
 +
 
 +
<math>\,2x(3t-3t_o-3)\not= 2x(3t-3-t_o)\,</math>
 +
 
 +
the system is time variant.

Latest revision as of 19:05, 11 September 2008

Definition of Time Invariance

A system $ \,s(t)\, $ is called time invariant if for any input signal $ \,x(t)\, $ yielding output signal $ \,y(t)\, $ and for any $ \,t_o\in\mathbb{R}\, $, the response to $ \,x(t-t_o)\, $ is $ \,y(t-t_o)\, $.

Example of a Time Invariant System

The following system is time invariant:

$ \,s(t)=2x(t-3)\, $


Proof:

We have a function $ \,x(t)\, $.

After applying the function to the system $ \,s(t)\, $, we get:

$ \,y(t)=2x(t-3)\, $

Thus,

$ \,y(t-t_o)=\, $

$ \,2x((t-t_o)-3)=\, $

$ \,2x(t-t_o-3)\, $


Now, apply $ \,x(t-t_o)\, $ to the system $ \,s(t)\, $:

$ \,2x((t-3)-t_o)\, $

$ \,2x(t-3-t_o)\, $


Since these two are equal

$ \,2x(t-t_o-3)=2x(t-3-t_o)\, $

the system is time invariant.

Example of a Time Variant System

The following system is time variant:

$ \,s(t)=2x(3t-3)\, $


Proof:

We have a function $ \,x(t)\, $.

After applying the function to the system $ \,s(t)\, $, we get:

$ \,y(t)=2x(3t-3)\, $

Thus,

$ \,y(t-t_o)=\, $

$ \,2x(3(t-t_o)-3)=\, $

$ \,2x(3t-3t_o-3)\, $


Now, apply $ \,x(t-t_o)\, $ to the system $ \,s(t)\, $:

$ \,2x((3t-3)-t_o)\, $

$ \,2x(3t-3-t_o)\, $


Since these two are not equal

$ \,2x(3t-3t_o-3)\not= 2x(3t-3-t_o)\, $

the system is time variant.

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva