(→Again, not with words but with diagrams) |
(→Again, not words but DIAGRAMS) |
||
Line 1: | Line 1: | ||
===Again, not words but DIAGRAMS=== | ===Again, not words but DIAGRAMS=== | ||
+ | [[image:timeinvariant301.jpg]] if z(t)=y(t) then it is said to be Time Invariant (T.I) | ||
+ | ===Not time Invariant System=== | ||
+ | <math>\,\ x(t) = t^2 </math> and the system multiplies it by t. | ||
+ | |||
+ | <math>\,\ y(t) = (t-to)^3</math> | ||
+ | |||
+ | <math>\,\ z(t) = t(t-to)^2</math> | ||
+ | |||
+ | and thus it is not T.I. because y(t) does not equal z(t) | ||
+ | ===Time Invariant System=== | ||
+ | <math>\,\ x(t) = t^2 </math> and the system multiplies it by 3. | ||
+ | |||
+ | <math>\,\ y(t) = 3(t-to)^2</math> | ||
+ | |||
+ | <math>\,\ z(t) = 3(t-to)^2</math> | ||
+ | |||
+ | and '''BAMO''' y(t) does indeed equal z(t) so it is T.I. |
Latest revision as of 18:43, 11 September 2008
Again, not words but DIAGRAMS
File:Timeinvariant301.jpg if z(t)=y(t) then it is said to be Time Invariant (T.I)
Not time Invariant System
$ \,\ x(t) = t^2 $ and the system multiplies it by t.
$ \,\ y(t) = (t-to)^3 $
$ \,\ z(t) = t(t-to)^2 $
and thus it is not T.I. because y(t) does not equal z(t)
Time Invariant System
$ \,\ x(t) = t^2 $ and the system multiplies it by 3.
$ \,\ y(t) = 3(t-to)^2 $
$ \,\ z(t) = 3(t-to)^2 $
and BAMO y(t) does indeed equal z(t) so it is T.I.