(New page: == Time Invariance == A system is called time invariant if shifting it's input signal in time results in the same time shift propagated to its output. == Example of a Time Invariant Syste...)
 
 
Line 3: Line 3:
  
 
== Example of a Time Invariant System ==
 
== Example of a Time Invariant System ==
Given the system <math>y(t) = 10x(t)</math>
+
Given the system <math>y(t) = 10x(t)</math>:
  
  
Line 19: Line 19:
  
 
== Example of a Time Variant System ==
 
== Example of a Time Variant System ==
 +
Given the system <math>y(t) = 6x(4t + 2)</math>:
 +
 +
 +
First, apply the time delay to the input <math>x(t)</math>: <math>w_1(t) = x(t-t_0)</math>
 +
 +
Then feed <math>w(t)</math> into the system: <math>z_1(t) = 6x(4t - t_0 + 2)</math>
 +
 +
 +
Now, try using the system first: <math>w_2(t)=6x(4t + 2)</math>
 +
 +
Applying the time delay: <math>z_2(t) = 6x(4t - 4t_0 + 2)</math>
 +
 +
 +
Since <math>z_1(t) \ne z_2(t)</math> the system is <b>NOT</b> Time Invariant.

Latest revision as of 15:59, 11 September 2008

Time Invariance

A system is called time invariant if shifting it's input signal in time results in the same time shift propagated to its output.

Example of a Time Invariant System

Given the system $ y(t) = 10x(t) $:


First, apply the time delay to the input $ x(t) $: $ w_1(t) = x(t-t_0) $

Then feed $ w(t) $ into the system: $ z_1(t) = 10x(t-t_0) $


Now, try using the system first: $ w_2(t)=10x(t) $

Applying the time delay: $ z_2(t) = 10x(t-t_0) $


Since $ z_1(t) = z_2(t) $ the system is Time Invariant.

Example of a Time Variant System

Given the system $ y(t) = 6x(4t + 2) $:


First, apply the time delay to the input $ x(t) $: $ w_1(t) = x(t-t_0) $

Then feed $ w(t) $ into the system: $ z_1(t) = 6x(4t - t_0 + 2) $


Now, try using the system first: $ w_2(t)=6x(4t + 2) $

Applying the time delay: $ z_2(t) = 6x(4t - 4t_0 + 2) $


Since $ z_1(t) \ne z_2(t) $ the system is NOT Time Invariant.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett