(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
6 a) The system cannot be time-invariant.
 
6 a) The system cannot be time-invariant.
 +
  
 
<math>X_k[n] = \delta[n - k] \rightarrow system \rightarrow Y_k[n] = (k + 1)^2 \delta[n - (k + 1)]</math>
 
<math>X_k[n] = \delta[n - k] \rightarrow system \rightarrow Y_k[n] = (k + 1)^2 \delta[n - (k + 1)]</math>
  
Let us apply a time-delay of <math>n_0</math> to the system.
 
  
<math>\delta[n - k] \rightarrow system \rightarrow (k + 1)^2 \delta[n - (k + 1)] \rightarrow time-delay \rightarrow (k + 1)^2 \delta[n - n_0 -(k + 1)] = (k + 1)^2 \delta[n -(k + 1 -n_0)]  </math>
+
Let us apply a time-delay of <math>n_0</math> to the system.
 +
 
 +
 
 +
System followed by time-delay:
 +
 
 +
<math>\delta[n - k] \rightarrow system \rightarrow (k + 1)^2 \delta[n - (k + 1)] \rightarrow time-delay \rightarrow (k + 1)^2 \delta[n - n_0 -(k + 1)] = (k + 1)^2 \delta[n -(k + 1 +n_0)]  </math>
 +
 
 +
 
 +
Time-delay followed by system:
 +
 
 +
<math>\delta[n - k] \rightarrow time-delay \rightarrow \delta[n-(k + n_0)] \rightarrow system \rightarrow (k + n_0 + 1)^2 \delta[n - (k + n_0 + 1)]</math>
 +
 
 +
Since the outputs don't match, the system is not time-invariant.
 +
 
 +
 
 +
6 b) Since the system is linear, the input needed to yield Y[n] = u[n - 1] is X[n] = u[n].
 +
 
 +
 
 +
<math>X_k[n] = u[n - k] \rightarrow system \rightarrow Y_k[n] = (k + 1)^2 u[n - (k + 1)]</math>
 +
 
 +
In this case k = 0.
 +
 
 +
Therefore,
 +
<math>X_0[n] = u[n] \rightarrow system \rightarrow Y_0[n] = u[n - 1)]</math>

Latest revision as of 15:52, 11 September 2008

6 a) The system cannot be time-invariant.


$ X_k[n] = \delta[n - k] \rightarrow system \rightarrow Y_k[n] = (k + 1)^2 \delta[n - (k + 1)] $


Let us apply a time-delay of $ n_0 $ to the system.


System followed by time-delay:

$ \delta[n - k] \rightarrow system \rightarrow (k + 1)^2 \delta[n - (k + 1)] \rightarrow time-delay \rightarrow (k + 1)^2 \delta[n - n_0 -(k + 1)] = (k + 1)^2 \delta[n -(k + 1 +n_0)] $


Time-delay followed by system:

$ \delta[n - k] \rightarrow time-delay \rightarrow \delta[n-(k + n_0)] \rightarrow system \rightarrow (k + n_0 + 1)^2 \delta[n - (k + n_0 + 1)] $

Since the outputs don't match, the system is not time-invariant.


6 b) Since the system is linear, the input needed to yield Y[n] = u[n - 1] is X[n] = u[n].


$ X_k[n] = u[n - k] \rightarrow system \rightarrow Y_k[n] = (k + 1)^2 u[n - (k + 1)] $

In this case k = 0.

Therefore, $ X_0[n] = u[n] \rightarrow system \rightarrow Y_0[n] = u[n - 1)] $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett