(Examples)
 
Line 4: Line 4:
  
 
==Examples==
 
==Examples==
 +
 +
Time-Invariant System
 +
 +
<pre>
 +
y = 2x(t)
 +
 +
x1(t) -> x1(t-t0) -System-> 2x1(t-t0)
 +
 +
x2(t) -System-> 2x2(t) ->  2x2(t-t0)
 +
 +
Therefore, this system is Time Invariant
 +
</pre>
 +
 +
 +
Time-Variant System
 +
 +
<pre>
 +
y = x(2t)
 +
 +
x1(t) -> x1(t-t0) -System->  x1(2t-t0)
 +
 +
x2(t) -System-> x2(2t) ->    x2(2(t-t0))
 +
 +
Therefore, this system is Time Variant because the outputs do not match.
 +
</pre>

Latest revision as of 11:28, 11 September 2008

A system is Time Invariant if:

TIimg ECE301Fall2008mboutin.png

Examples

Time-Invariant System

y = 2x(t)

x1(t) -> x1(t-t0) -System-> 2x1(t-t0)

x2(t) -System-> 2x2(t) ->   2x2(t-t0)

Therefore, this system is Time Invariant


Time-Variant System

y = x(2t)

x1(t) -> x1(t-t0) -System->  x1(2t-t0)

x2(t) -System-> x2(2t) ->    x2(2(t-t0))

Therefore, this system is Time Variant because the outputs do not match.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood