(Example of a Non-Linear Transformation)
(What Does Linearity Mean?)
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
==What Does Linearity Mean?==
 
==What Does Linearity Mean?==
  
Linearity describes a special property of a transformation '''T''' from '''R'''<sup>''n''</sup> to '''R'''<sup>''m''</sup> such that any linear combination of inputs yields the linear combination of their respective outputs. A transformation such as this remains closed under the operations of addition and scalar multiplication.
+
Linearity describes the special property of a transformation '''T''' from '''R'''<sup>''n''</sup> to '''R'''<sup>''m''</sup> such that any linear combination of its inputs yields a linear combination of their respective outputs. A transformation such as this remains closed under the operations of addition and scalar multiplication.
  
 
==Example of a Linear Transformation (system)==
 
==Example of a Linear Transformation (system)==
Line 12: Line 12:
 
and <math>\ X </math> is any vector in '''R'''<sup>''2''</sup>
 
and <math>\ X </math> is any vector in '''R'''<sup>''2''</sup>
  
Therefore <math>\ T(C_1 e1)= \begin{bmatrix}cos(\pi/2) & sin(\pi/2)\\ -sin(\pi/2) & cos(\pi/2)\end{bmatrix} \begin{bmatrix} C_1 \\ 0 \end{bmatrix} = \begin{bmatrix}C_1/ \sqrt(2) \\ -C_1/\sqrt(2) \end{bmatrix} </math>
+
Therefore <math>\ T(C_1 e_1)= \begin{bmatrix}cos(\pi/2) & sin(\pi/2)\\ -sin(\pi/2) & cos(\pi/2)\end{bmatrix} \begin{bmatrix} C_1 \\ 0 \end{bmatrix} = \begin{bmatrix}C_1/ \sqrt(2) \\ -C_1/\sqrt(2) \end{bmatrix} </math>
  
 
and
 
and
Line 36: Line 36:
 
Let a physical system be modeled by the following non-linear transformation:
 
Let a physical system be modeled by the following non-linear transformation:
  
<math>T(x)= ln(x) </math>
+
<math>\ T(x,y)= x\ln(y) </math>
 +
Proof that it is not linear:
 +
 
 +
<math>\ T(x_1, y_1) + T(x_2,y_2) = x_1 \ln(y_1)+ x_2 \ln(y_2) = U</math>
 +
 
 +
Now Summing the input signals and then putting it into the transformation yields:
 +
 
 +
<math>\ T(x_1+x_2,y_1+y_2)= (x_1+x_2)\ln(y_1+y_2)=x_1 \ln(y_1+y_2) + x_2 \ln(y_1+y_2) = W</math>
 +
 
 +
<math>\ U \ne W</math>
 +
Therefore, transformation is not linear.

Latest revision as of 12:50, 12 September 2008

What Does Linearity Mean?

Linearity describes the special property of a transformation T from Rn to Rm such that any linear combination of its inputs yields a linear combination of their respective outputs. A transformation such as this remains closed under the operations of addition and scalar multiplication.

Example of a Linear Transformation (system)

The following linear transformation takes any vector in R2 and maps it to another vector in R2 of same length rotated 45 degrees counter clockwise. Using the standard basis vectors:

$ \ T(X)= \mathbf{A}X $

where $ \mathbf{A} = \begin{bmatrix}cos(\pi/2) & sin(\pi/2)\\ -sin(\pi/2) & cos(\pi/2) \end{bmatrix} $

and $ \ X $ is any vector in R2

Therefore $ \ T(C_1 e_1)= \begin{bmatrix}cos(\pi/2) & sin(\pi/2)\\ -sin(\pi/2) & cos(\pi/2)\end{bmatrix} \begin{bmatrix} C_1 \\ 0 \end{bmatrix} = \begin{bmatrix}C_1/ \sqrt(2) \\ -C_1/\sqrt(2) \end{bmatrix} $

and

$ \ T(C_2 e_2)= \begin{bmatrix}cos(\pi/2) & sin(\pi/2)\\ -sin(\pi/2) & cos(\pi/2)\end{bmatrix} \begin{bmatrix} 0 \\ C_2 \end{bmatrix} = \begin{bmatrix}C_2/ \sqrt(2) \\ C_2/\sqrt(2) \end{bmatrix} $

Now summing the two vectors:

$ \ Y = T(C_1 e_1) + T(C_2 e_2) = \begin{bmatrix}\frac{C_1} {\sqrt(2)} + \frac{C_2}{\sqrt(2)} \\ \frac{-C_1}{\sqrt(2)} + \frac{C_2}{\sqrt(2)} \end{bmatrix} $


Now summing the two vectors before putting them into the transformation:

$ \ X= C_1 e_1 + C_2 e_2 = \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} $

$ \ T(X)= \begin{bmatrix}cos(\pi/2) & sin(\pi/2) \\ -sin(\pi/2) & cos(\pi/2)\end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} $

$ \ T(X) = C_1 \begin{bmatrix} cos(\pi/2) \\ -sin(\pi/2) \end{bmatrix} + C_2 \begin{bmatrix}sin(\pi/2) \\ cos(\pi/2) \end{bmatrix} = \begin{bmatrix}\frac{C_1} {\sqrt(2)} + \frac{C_2}{\sqrt(2)} \\ \frac{-C_1}{\sqrt(2)} + \frac{C_2}{\sqrt(2)} \end{bmatrix}= T(C_1 e_1)+T(C_2 e_2) = Y $

Therefore the transformation is linear.

Example of a Non-Linear Transformation

Let a physical system be modeled by the following non-linear transformation:

$ \ T(x,y)= x\ln(y) $ Proof that it is not linear:

$ \ T(x_1, y_1) + T(x_2,y_2) = x_1 \ln(y_1)+ x_2 \ln(y_2) = U $

Now Summing the input signals and then putting it into the transformation yields:

$ \ T(x_1+x_2,y_1+y_2)= (x_1+x_2)\ln(y_1+y_2)=x_1 \ln(y_1+y_2) + x_2 \ln(y_1+y_2) = W $

$ \ U \ne W $ Therefore, transformation is not linear.

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett