(→Examples) |
|||
Line 20: | Line 20: | ||
</pre> | </pre> | ||
Therefore, this system is linear | Therefore, this system is linear | ||
+ | |||
+ | |||
+ | A Non-linear System: | ||
+ | |||
+ | <math> y(t) = x(t)^2 </math> | ||
+ | |||
+ | <pre> | ||
+ | x1(t) -> Ax1(t) | ||
+ | |+| Ax(t) + Bx(t) -System-> (Ax(t) + Bx(t))^2 | ||
+ | x2(t) -> Bx2(t) | ||
+ | |||
+ | x1(t) -System-> x1(t)^2 -> Ax1(t)^2 | ||
+ | |+| Ax1(t)^2 + Bx2(t)^2 | ||
+ | x2(t) -System-> x2(t)^2 -> Bx2(t)^2 | ||
+ | </pre> | ||
+ | |||
+ | Therefore, this system is non-linear |
Latest revision as of 11:14, 11 September 2008
A system is called linear if:
Examples
A Linear System:
$ y(t) = 2x(2t) $
x1(t) -> Ax1(t) |+| Ax(t) + Bx(t) -System-> 2Ax1(2t) + 2Bx2(2t) x2(t) -> Bx2(t) x1(t) -System-> 2x1(2t) -> 2Ax1(2t) |+| 2Ax1(2t) + 2Bx2(2t) x2(t) -System-> 2x2(2t) -> 2Bx2(2t)
Therefore, this system is linear
A Non-linear System:
$ y(t) = x(t)^2 $
x1(t) -> Ax1(t) |+| Ax(t) + Bx(t) -System-> (Ax(t) + Bx(t))^2 x2(t) -> Bx2(t) x1(t) -System-> x1(t)^2 -> Ax1(t)^2 |+| Ax1(t)^2 + Bx2(t)^2 x2(t) -System-> x2(t)^2 -> Bx2(t)^2
Therefore, this system is non-linear