(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
 
== Def of linear system ==
 
== Def of linear system ==
  
 
Linear system is a system that possesses the important property of superposition.(Text book P.53)
 
Linear system is a system that possesses the important property of superposition.(Text book P.53)
 +
 +
 +
 +
== linear system ==
 +
<math>y(t) = 4x(t)</math>
 +
 +
<math>x_1(t)\rightarrow y_1(t) = 4x_1(t)</math>
 +
 +
<math>x_2(t)\rightarrow y_2(t) = 4x_2(t)</math>
 +
 +
<math>x_3 = ax_1(t) + bx_2(t)</math>
 +
 +
<math>w(t) = 4t_3(t)</math>
 +
 +
<math>=4(ax_1(t) + bx_2(t))</math>
 +
 +
<math>=4ax_1(t) + 4bx_2(t)</math>
 +
 +
<math>=ay_1(t) + by_2(t)</math>
 +
 +
so it is linear
 +
 +
== non linear system ==
 +
 +
<math>y[n] = 4x[n] + 5</math>
 +
 +
<math>x_1 \rightarrow y_1[n] = 4x_1[n] +5 = 21 </math>
 +
 +
<math>x_2 \rightarrow y_2[n] = 4x_2[n] + 5 = 25</math>
 +
 +
<math>w[n] = 4[x_1[n] + x_2[n]] + 5 = 41</math>
 +
 +
<math>w[n]\neq y_1[n] + y_2[n] </math>
 +
 +
so it is non linear

Latest revision as of 09:53, 11 September 2008

Def of linear system

Linear system is a system that possesses the important property of superposition.(Text book P.53)


linear system

$ y(t) = 4x(t) $

$ x_1(t)\rightarrow y_1(t) = 4x_1(t) $

$ x_2(t)\rightarrow y_2(t) = 4x_2(t) $

$ x_3 = ax_1(t) + bx_2(t) $

$ w(t) = 4t_3(t) $

$ =4(ax_1(t) + bx_2(t)) $

$ =4ax_1(t) + 4bx_2(t) $

$ =ay_1(t) + by_2(t) $

so it is linear

non linear system

$ y[n] = 4x[n] + 5 $

$ x_1 \rightarrow y_1[n] = 4x_1[n] +5 = 21 $

$ x_2 \rightarrow y_2[n] = 4x_2[n] + 5 = 25 $

$ w[n] = 4[x_1[n] + x_2[n]] + 5 = 41 $

$ w[n]\neq y_1[n] + y_2[n] $

so it is non linear

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett