(Linearity)
(Linearity)
 
(5 intermediate revisions by the same user not shown)
Line 5: Line 5:
  
 
A*x1(t) + B*x2(t) => A*y1(t) + B*y2(t) .... extendable for any amount of complex numbers (A, B, C...) and functions (x1, x2, x3...)
 
A*x1(t) + B*x2(t) => A*y1(t) + B*y2(t) .... extendable for any amount of complex numbers (A, B, C...) and functions (x1, x2, x3...)
 +
  
 
  Linear System:  y[n] = 4 * x[n]
 
  Linear System:  y[n] = 4 * x[n]
 +
 
  Let x1[n] = <math>2n</math>  
 
  Let x1[n] = <math>2n</math>  
 
     x2[n] = <math>n^2</math>
 
     x2[n] = <math>n^2</math>
 +
 
 +
x1[n] + x2[n] = xtot[n] = <math>2n + n^2</math> ====> ytot[n] = 4* xtot[n] = <math>8n + 4n^2</math>
 +
 +
x1[n] => y1[n] = 8n        x2[n] => y2[n] = <math>4n^2</math>  ====>    ytot = y1[n] + y2[n] = <math>8n + 4n^2</math> 
 +
 +
<math>8n + 4n^2</math>  =    <math>8n + 4n^2</math>
 +
 
 +
Since the output of the two is the same, the system is linear.
  
x1[n] + x2[n] = xtot[n] = <math>2n + n^2</math> ===> ytot[n] = 4* xtot[n] = <math>8n + 4n^2</math>
+
 
 +
 
 +
Nonlinear System:  y[n] = x[n]<math>^2</math>
 +
 +
Let x1[n] = <math>2n</math>
 +
    x2[n] = <math>n^2</math>
 +
 +
  x1[n] + x2[n] = xtot[n] = <math>2n + n^2</math> ====> ytot[n] = xtot[n]<math>^2</math>
 +
= <math>4n^2 + 4n^3 + n^4</math>
 +
 
 +
x1[n] => y1[n] = 4n^2       x2[n] => y2[n] = <math>n^4</math>  ====>    ytot = y1[n] + y2[n] = <math>4n^2 + n^4</math> 
 +
 +
<math>4n^2 + 4n^3 + n^4</math>  !=    <math>4n^2 + n^4</math>  
 +
 +
Since the output of the two is not the same, the system is nonlinear.

Latest revision as of 08:10, 11 September 2008

Linearity

Linearity- A system is linear if a constant that multiplies an input to a system is also present in the output. Adding any number of linear combinations of complex numbers and functions of time together does not affect the linearity of the system.

A*x1(t) + B*x2(t) => A*y1(t) + B*y2(t) .... extendable for any amount of complex numbers (A, B, C...) and functions (x1, x2, x3...)


Linear System:  y[n] = 4 * x[n]

Let x1[n] = $ 2n $ 
    x2[n] = $ n^2 $
 
x1[n] + x2[n] = xtot[n] = $ 2n + n^2 $ ====> ytot[n] = 4* xtot[n] = $ 8n + 4n^2 $

x1[n] => y1[n] = 8n        x2[n] => y2[n] = $ 4n^2 $  ====>     ytot = y1[n] + y2[n] = $ 8n + 4n^2 $   

$ 8n + 4n^2 $   =    $ 8n + 4n^2 $
 
Since the output of the two is the same, the system is linear.


Nonlinear System:  y[n] = x[n]$ ^2 $

Let x1[n] = $ 2n $ 
    x2[n] = $ n^2 $

 x1[n] + x2[n] = xtot[n] = $ 2n + n^2 $ ====> ytot[n] = xtot[n]$ ^2 $
= $ 4n^2 + 4n^3 + n^4 $
 
x1[n] => y1[n] = 4n^2        x2[n] => y2[n] = $ n^4 $  ====>     ytot = y1[n] + y2[n] = $ 4n^2 + n^4 $   

$ 4n^2 + 4n^3 + n^4 $   !=    $ 4n^2 + n^4 $ 

Since the output of the two is not the same, the system is nonlinear.

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn