(→Question 6a) |
(→Question 6a) |
||
Line 35: | Line 35: | ||
− | <math>X_1[n] \longrightarrow Y_1[n]=4\delta[n-2] \longrightarrow Y_1[n-n_0]=\,</math> | + | <math>X_1[n] \longrightarrow Y_1[n]=4\delta[n-2] \longrightarrow Y_1[n-n_0]=4\delta[n-n_0-2]\,</math> |
− | + | This also shifts the system's value when k = 1 a time length of <math> n_0\,</math> forward. Thus the system is T.I. | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + |
Revision as of 07:48, 11 September 2008
Question 6a
I'm assuming $ n\, $ is the variable I will be applying the time shift to. I looked at some other peoples work and although they all thought $ k\, $ was the time variable, I think $ k\, $ is just an arbitrary step moving the function forward relative to some time position $ n\, $. In other words , $ k=2\, $ doesn't mean time = 2 sec, it just means 2 steps ahead of time $ n\, $. Another reason I chose $ n\, $ to be the time variable is because when you discussed the sifting property in class you sifted by $ n_0\, $, not $ k\, $.
$ X_k[n]=Y_k[n] \, $
where
$ X_k[n]=\delta[n-k]\, $
and
$ Y_k[n]=(k+1)^2 \delta[n-(k+1)] \, $
Consider the input and output of the system when k = 1
$ X_1[n]=\delta[n-1]\, $
and
$ Y_1[n]=4\delta[n-2] \, $
If I time shift the input by $ n_0\, $ , then run it through the system I obtain:
$ X_1[n] \longrightarrow X_1[n-n_0-1] \longrightarrow Y_1[n]=4\delta[n-n_0-2]\, $
Which shifts the system's value when k = 1 a time length of $ n_0\, $ forward.
If I run it through the system, then time shift the output by $ n_0\, $ I obtain:
$ X_1[n] \longrightarrow Y_1[n]=4\delta[n-2] \longrightarrow Y_1[n-n_0]=4\delta[n-n_0-2]\, $
This also shifts the system's value when k = 1 a time length of $ n_0\, $ forward. Thus the system is T.I.