(Question 6a)
(Question 6a)
Line 5: Line 5:
 
<math> X_k[n]=X_k[n] \,</math>
 
<math> X_k[n]=X_k[n] \,</math>
 
where  
 
where  
 +
 
<math> X_k[n]=\delta[n-k]\,</math>     
 
<math> X_k[n]=\delta[n-k]\,</math>     
 
and  
 
and  
 +
 
<math> Y_k[n]=(k+1)^2 \delta[n-(k+1)] \,</math>
 
<math> Y_k[n]=(k+1)^2 \delta[n-(k+1)] \,</math>
  

Revision as of 07:13, 11 September 2008

Question 6a

I'm assuming k is the variable representing any fo.

$ X_k[n]=X_k[n] \, $ where

$ X_k[n]=\delta[n-k]\, $ and

$ Y_k[n]=(k+1)^2 \delta[n-(k+1)] \, $



Under this assumption the following system cannot possibly be time invariant because of the $ (k+1)^2 $ term.

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison