(New page: == Time-Invariant System == A time invariant system is a system that produces equivalent results for the following cases: 1. A time shifted input, <math>x(t+t_0) \,</math> ,is entered in...)
 
(Time-variant System)
 
(9 intermediate revisions by the same user not shown)
Line 1: Line 1:
== Time-Invariant System ==
+
== Time-Invariant System Definition==
  
 
A time invariant system is a system that produces equivalent results for the following cases:
 
A time invariant system is a system that produces equivalent results for the following cases:
  
1. A time shifted input, <math>x(t+t_0) \,</math> ,is entered into the system.
+
1. A time shifted input <math>x(t+t_0) \,</math> is entered into the system.
 +
 
 +
2. An input <math>x(t) \,</math> is entered into the system then time shifted by <math>t_0 \,</math>.
 +
 
 +
== Time-Invariant System ==
 +
 
 +
Consider the system: <math>y(t)=x(t-3) \,</math>
 +
 
 +
If <math>x(t) \,</math> is first time shifted, then put into the system:
 +
 
 +
<math>x(t) \longrightarrow x(t-t_0) \longrightarrow y(t)=(t-3)=x(t)=(t-3-t_0)\,</math>
 +
 
 +
 
 +
 
 +
If <math>x(t) \,</math> is first entered into the system, then time shifted:
 +
 
 +
<math>x(t) \longrightarrow y(t)=x(t-3) \longrightarrow y(t-t_0)=x(t-t_0-3)\,</math>
 +
 
 +
 
 +
 
 +
Thus this system is T.I.
 +
 
 +
 
 +
 
 +
== Time-Variant System ==
 +
 
 +
Consider the system: <math>y(t)=x(t^2-3) \,</math>
 +
 
 +
If <math>x(t) \,</math> is first time shifted, then put into the system:
 +
 
 +
<math>x(t) \longrightarrow x(t-t_0) \longrightarrow y(t)=x(t^2-3-t_0)\,</math>
 +
 
 +
 
 +
 
 +
If <math>x(t) \,</math> is first entered into the system, then time shifted:
 +
 
 +
<math>x(t) \longrightarrow y(t)=x(t^2-3) \longrightarrow y(t-t_0)=x((t-t_0)^2-3)\,</math>
 +
 
 +
 
  
2. An input, <math>x(t) \,</math>, is entered into the system then time shifted by <math>t_0 \,</math>
+
Thus this system isn't T.I.

Latest revision as of 06:52, 11 September 2008

Time-Invariant System Definition

A time invariant system is a system that produces equivalent results for the following cases:

1. A time shifted input $ x(t+t_0) \, $ is entered into the system.

2. An input $ x(t) \, $ is entered into the system then time shifted by $ t_0 \, $.

Time-Invariant System

Consider the system: $ y(t)=x(t-3) \, $

If $ x(t) \, $ is first time shifted, then put into the system:

$ x(t) \longrightarrow x(t-t_0) \longrightarrow y(t)=(t-3)=x(t)=(t-3-t_0)\, $


If $ x(t) \, $ is first entered into the system, then time shifted:

$ x(t) \longrightarrow y(t)=x(t-3) \longrightarrow y(t-t_0)=x(t-t_0-3)\, $


Thus this system is T.I.


Time-Variant System

Consider the system: $ y(t)=x(t^2-3) \, $

If $ x(t) \, $ is first time shifted, then put into the system:

$ x(t) \longrightarrow x(t-t_0) \longrightarrow y(t)=x(t^2-3-t_0)\, $


If $ x(t) \, $ is first entered into the system, then time shifted:

$ x(t) \longrightarrow y(t)=x(t^2-3) \longrightarrow y(t-t_0)=x((t-t_0)^2-3)\, $


Thus this system isn't T.I.

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics