(8 intermediate revisions by the same user not shown)
Line 8: Line 8:
 
===1st Assumption: n represents time===
 
===1st Assumption: n represents time===
  
<math> d[n-k] --> [system] --> (k+1)^2 d[n - (k+1)] --> [timedelay -1] --> (k+1)^2 d[(n-1) -( k+1)] ,\</math>
+
<math> d[n-k] --> [system] --> (k+1)^2*d[n-(k+1)] --> [timedelay -1] --> (k+1)^2*d[(n-1)-(k+1)] \,</math>
  
 
yields the same result as:
 
yields the same result as:
  
<math> d[n-k] --> [timedelay -1] --> d[(n-1) - k] --> [system] --> (k+1)^2 d[(n-1) - (k+1)] ,\</math>
+
<math> d[n-k] --> [timedelay -1] --> d[(n-1)-k] --> [system] --> (k+1)^2*d[(n-1)-(k+1)] \,</math>
  
  
 
===2st Assumption: k represents time===
 
===2st Assumption: k represents time===
  
<math> d[n-k] --> [system] --> (k+1)^2 d[n - (k+1)] --> [timedelay -1] --> (k+1)^2 d[n-k] ,\</math>
+
<math> d[n-k] --> [system] --> (k+1)^2*d[n-(k+1)] --> [timedelay -1] --> (k+1)^2*d[n-k] \,</math>
  
 
yields not the same result as:
 
yields not the same result as:
  
<math> d[n-k] --> [timedelay -1] --> d[n - (k-1)] --> [system] --> k^2 d[n-k] ,\</math>
+
<math> d[n-k] --> [timedelay -1] --> d[n-(k-1)] --> [system] --> k^2*d[n-k] \,</math>
 
+
  
  
 
Remember: Time delay only occurs on function, not variable on equations.
 
Remember: Time delay only occurs on function, not variable on equations.
  
Concluded, it is time invariant if we say n represents time,
+
Concluded, it is time invariant if we say n represents time, and it is time variant if we say k represents time.
      and it is time   variant if we say k represents time.
+
 
 +
 
 +
=Input X[n]=
 +
 
 +
Since it is linear, we can say that
 +
 
 +
<math>Y[n] = u[n-1] \,</math>
 +
 
 +
with an input <math>X[n] = u[n] - u[1] \,</math>

Latest revision as of 18:56, 10 September 2008

Time Invariance? or Time Variance?

System: $ Y_k[n] = (k+1)^2 d[n - (k+1)] \, $

Input: $ X_k[n] = d[n-k] \, $

Prob: Which variable represent time ?

1st Assumption: n represents time

$ d[n-k] --> [system] --> (k+1)^2*d[n-(k+1)] --> [timedelay -1] --> (k+1)^2*d[(n-1)-(k+1)] \, $

yields the same result as:

$ d[n-k] --> [timedelay -1] --> d[(n-1)-k] --> [system] --> (k+1)^2*d[(n-1)-(k+1)] \, $


2st Assumption: k represents time

$ d[n-k] --> [system] --> (k+1)^2*d[n-(k+1)] --> [timedelay -1] --> (k+1)^2*d[n-k] \, $

yields not the same result as:

$ d[n-k] --> [timedelay -1] --> d[n-(k-1)] --> [system] --> k^2*d[n-k] \, $


Remember: Time delay only occurs on function, not variable on equations.

Concluded, it is time invariant if we say n represents time, and it is time variant if we say k represents time.


Input X[n]

Since it is linear, we can say that

$ Y[n] = u[n-1] \, $

with an input $ X[n] = u[n] - u[1] \, $

Alumni Liaison

EISL lab graduate

Mu Qiao