Line 8: Line 8:
 
===1st Assumption: n represents time===
 
===1st Assumption: n represents time===
  
<math> d[n-k] --> [system] --> (k+1)^2 d[n-(k+1)] --> [timedelay -1] --> (k+1)^2 d[(n-1)-(k+1)] ,\</math>
+
<math> d[n-k] --> [system] --> (k+1)^2*d[n-(k+1)] --> [timedelay -1] --> (k+1)^2*d[(n-1)-(k+1)] ,\</math>
  
 
yields the same result as:
 
yields the same result as:
  
<math> d[n-k] --> [timedelay -1] --> d[(n-1)-k] --> [system] --> (k+1)^2 d[(n-1)-(k+1)] ,\</math>
+
<math> d[n-k] --> [timedelay -1] --> d[(n-1)-k] --> [system] --> (k+1)^2*d[(n-1)-(k+1)] ,\</math>
  
  
 
===2st Assumption: k represents time===
 
===2st Assumption: k represents time===
  
<math> d[n-k] --> [system] --> (k+1)^2 d[n-k+1)] --> [timedelay -1] --> (k+1)^2 d[n-k] ,\</math>
+
<math> d[n-k] --> [system] --> (k+1)^2*d[n-k+1)] --> [timedelay -1] --> (k+1)^2*d[n-k] ,\</math>
  
 
yields not the same result as:
 
yields not the same result as:
  
<math> d[n-k] --> [timedelay -1] --> d[n-k-1)] --> [system] --> k^2 d[n-k] ,\</math>
+
<math> d[n-k] --> [timedelay -1] --> d[n-k-1)] --> [system] --> k^2*d[n-k] ,\</math>
  
  

Revision as of 18:47, 10 September 2008

Time Invariance? or Time Variance?

System: $ Y_k[n] = (k+1)^2 d[n - (k+1)] \, $

Input: $ X_k[n] = d[n-k] \, $

Prob: Which variable represent time ?

1st Assumption: n represents time

$ d[n-k] --> [system] --> (k+1)^2*d[n-(k+1)] --> [timedelay -1] --> (k+1)^2*d[(n-1)-(k+1)] ,\ $

yields the same result as:

$ d[n-k] --> [timedelay -1] --> d[(n-1)-k] --> [system] --> (k+1)^2*d[(n-1)-(k+1)] ,\ $


2st Assumption: k represents time

$ d[n-k] --> [system] --> (k+1)^2*d[n-k+1)] --> [timedelay -1] --> (k+1)^2*d[n-k] ,\ $

yields not the same result as:

$ d[n-k] --> [timedelay -1] --> d[n-k-1)] --> [system] --> k^2*d[n-k] ,\ $


Remember: Time delay only occurs on function, not variable on equations.

Concluded, it is time invariant if we say n represents time, and it is time variant if we say k represents time.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett