(→Time Invariance) |
(→Example of a non time invariance system) |
||
(4 intermediate revisions by the same user not shown) | |||
Line 5: | Line 5: | ||
<math>x(t) --> [system] --> [time delay] --> y(t)\,</math> | <math>x(t) --> [system] --> [time delay] --> y(t)\,</math> | ||
− | + | yields the same result as | |
<math>x(t) --> [time delay] --> [system] --> y(t) \,</math> | <math>x(t) --> [time delay] --> [system] --> y(t) \,</math> | ||
+ | |||
+ | Remember: delay --> for only every function of t, change the t into t with the offset | ||
== Example of a time invariance system == | == Example of a time invariance system == | ||
− | |||
− | |||
− | <math> | + | <math>y(t) = x(t) \,</math> |
+ | <math>x(t) --> [system] --> x(t) --> [timedelay] --> x(t-1) \,</math> | ||
− | + | it yields the same result as: | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
+ | <math>x(t) --> [timedelay] --> x(t-1) --> [system] --> x(t-1) \,</math> | ||
== Example of a non time invariance system == | == Example of a non time invariance system == | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | <math> | + | <math>y(t) = t * x(t) \,</math> |
− | <math> | + | <math>x(t) --> [system] --> t * x(t) --> [timedelay] --> t * x(t-1) \,</math> |
− | + | it yields not the same result as: | |
− | <math> | + | <math>x(t) --> [timedelay] --> x(t-1) --> [system] --> (t-1) x(t-1) \,</math> |
== Reference == | == Reference == |
Latest revision as of 18:15, 10 September 2008
Contents
Time Invariance
A system is called time invariance if and only if:
$ x(t) --> [system] --> [time delay] --> y(t)\, $
yields the same result as
$ x(t) --> [time delay] --> [system] --> y(t) \, $
Remember: delay --> for only every function of t, change the t into t with the offset
Example of a time invariance system
$ y(t) = x(t) \, $
$ x(t) --> [system] --> x(t) --> [timedelay] --> x(t-1) \, $
it yields the same result as:
$ x(t) --> [timedelay] --> x(t-1) --> [system] --> x(t-1) \, $
Example of a non time invariance system
$ y(t) = t * x(t) \, $
$ x(t) --> [system] --> t * x(t) --> [timedelay] --> t * x(t-1) \, $
it yields not the same result as:
$ x(t) --> [timedelay] --> x(t-1) --> [system] --> (t-1) x(t-1) \, $
Reference
http://kiwi.ecn.purdue.edu/ECE301Fall2008mboutin/index.php/Concepts_and_Formulae