(Example of a non time invariance system)
 
(6 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
A system is called time invariance if and only if:
 
A system is called time invariance if and only if:
  
<math>'x --> [system] --> y' <==> 'y = f(x)' ('x --> [f] --> f(x)') \,</math>
+
<math>x(t) --> [system] --> [time delay] --> y(t)\,</math>
  
== Example of a time invariance system ==
+
yields the same result as
System is: <math> f(x) = 23x \,</math>
+
  
<math>X_1(t) = t^2 \,</math>
+
<math>x(t) --> [time delay] --> [system] --> y(t) \,</math>
  
<math>X_2(t) = 2t^2 \,</math>
+
Remember: delay --> for only every function of t, change the t into t with the offset
  
 +
== Example of a time invariance system ==
  
<math>f(aX_1 + bX_2) = af(X_1) + bf(X_2) \,</math>
 
  
<math>f(at^2 + 2bt^2) = af(t^2) + bf(2t^2) \,</math>
+
<math>y(t) = x(t) \,</math>  
  
<math>f(at^2 + 2bt^2) = a*23t^2 + b*46t^2 \,</math>
+
<math>x(t) --> [system] --> x(t) --> [timedelay] --> x(t-1) \,</math>
 
+
<math>f(at^2 + 2bt^2) = 23(at^2 + 2bt^2) \,</math>
+
 
+
<math> f(x) = 23x \,</math>
+
  
 +
it yields the same result as:
  
 +
<math>x(t) --> [timedelay] --> x(t-1) --> [system] --> x(t-1) \,</math>
  
  
  
 
== Example of a non time invariance system ==
 
== Example of a non time invariance system ==
System is: <math> f(x) = 23x + 1\,</math>
 
 
<math>X_1(t) = t^2 \,</math>
 
 
<math>X_2(t) = 2t^2 \,</math>
 
 
 
<math>f(aX_1 + bX_2) \neq af(X_1) + bf(X_2) \,</math>
 
  
<math>f(at^2 + 2bt^2) \neq af(t^2) + bf(2t^2) \,</math>
 
  
<math>f(at^2 + 2bt^2) \neq a(23t^2+1) + b(23*(2t^2)+1) \,</math>
+
<math>y(t) = t * x(t) \,</math>  
  
<math>f(at^2 + 2bt^2) \neq 23 at^2 + 1 + 46 bt^2 + b \,</math>
+
<math>x(t) --> [system] --> t * x(t) --> [timedelay] --> t * x(t-1) \,</math>
  
<math> f(at^2 + 2bt^2) \neq 23 (at^2 + 2bt^2) + a + b \,</math>
+
it yields not the same result as:
  
<math> f(x) \neq 23x + 1 \,</math>
+
<math>x(t) --> [timedelay] --> x(t-1) --> [system] --> (t-1) x(t-1) \,</math>
  
 
== Reference ==
 
== Reference ==

Latest revision as of 18:15, 10 September 2008

Time Invariance

A system is called time invariance if and only if:

$ x(t) --> [system] --> [time delay] --> y(t)\, $

yields the same result as

$ x(t) --> [time delay] --> [system] --> y(t) \, $

Remember: delay --> for only every function of t, change the t into t with the offset

Example of a time invariance system

$ y(t) = x(t) \, $

$ x(t) --> [system] --> x(t) --> [timedelay] --> x(t-1) \, $

it yields the same result as:

$ x(t) --> [timedelay] --> x(t-1) --> [system] --> x(t-1) \, $


Example of a non time invariance system

$ y(t) = t * x(t) \, $

$ x(t) --> [system] --> t * x(t) --> [timedelay] --> t * x(t-1) \, $

it yields not the same result as:

$ x(t) --> [timedelay] --> x(t-1) --> [system] --> (t-1) x(t-1) \, $

Reference

http://kiwi.ecn.purdue.edu/ECE301Fall2008mboutin/index.php/Concepts_and_Formulae

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett