(New page: The system is not time invariant Let time delay = t then Xk[n]=δ[n-k] -> time delay -> system =X(k+t)[n]=δ[n-(k+t)]->system =X(k+t)[n]=δ[n-k-t]->system =Y(k+t)[n]=...)
 
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
The system is not time invariant
+
(a)The system is time invariant
  
 
Let time delay = t
 
Let time delay = t
Line 7: Line 7:
 
Xk[n]=δ[n-k] -> time delay -> system
 
Xk[n]=δ[n-k] -> time delay -> system
  
=X(k+t)[n]=δ[n-(k+t)]->system
+
equals to X(k+t)[n]=δ[n-(k+t)]->system
  
=X(k+t)[n]=δ[n-k-t]->system
+
equals to X(k+t)[n]=δ[n-k-t]->system
  
=Y(k+t)[n]=<math>(k+t+1)^2</math> &delta;[n-(k+t+1)]
+
equals to Y(k+t)[n]=<math>(k+t+1)^2</math> &delta;[n-(k+t+1)]
 +
 
 +
while
 +
 
 +
Xk[n]=&delta;[n-k] -> system -> time delay
 +
 
 +
equals to Yk[n]=<math>(k+1)^2</math> &delta;[n-(k+1)]->time delay
 +
 
 +
equals to Y(k+t)[n]=<math>(k+t+1)^2</math> &delta;[n-(k+t+1)]
 +
 
 +
yields the same result
 +
 
 +
----
 +
(b)
 +
 
 +
According to row 1 of the table, input x[n]=u[n] yields the output Y[n]=u[n-1].

Latest revision as of 15:42, 10 September 2008

(a)The system is time invariant

Let time delay = t

then

Xk[n]=δ[n-k] -> time delay -> system

equals to X(k+t)[n]=δ[n-(k+t)]->system

equals to X(k+t)[n]=δ[n-k-t]->system

equals to Y(k+t)[n]=$ (k+t+1)^2 $ δ[n-(k+t+1)]

while

Xk[n]=δ[n-k] -> system -> time delay

equals to Yk[n]=$ (k+1)^2 $ δ[n-(k+1)]->time delay

equals to Y(k+t)[n]=$ (k+t+1)^2 $ δ[n-(k+t+1)]

yields the same result


(b)

According to row 1 of the table, input x[n]=u[n] yields the output Y[n]=u[n-1].

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood